Tag Archives: jaw coupling

China wholesaler Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling

Product Description

Flexible flex Fluid Chain Jaw flange Gear Rigid Spacer PIN HRC MH NM universal Fenaflex Oldham spline clamp tyre grid hydraulic servo motor shaft Coupling
 

Product Description

The function of Shaft coupling:
1. Shafts for connecting separately manufactured units such as motors and generators.
2. If any axis is misaligned.
3. Provides mechanical flexibility.
4. Absorb the transmission of impact load.
5. Prevent overload

We can provide the following couplings.
 

Rigid coupling Flange coupling Oldham coupling
Sleeve or muff coupling Gear coupling Bellow coupling
Split muff coupling Flexible coupling Fluid coupling
Clamp or split-muff or compression coupling Universal coupling Variable speed coupling
Bushed pin-type coupling Diaphragm coupling Constant speed coupling

Company Profile

We are an industrial company specializing in the production of couplings. It has 3 branches: steel casting, forging, and heat treatment. Main products: cross shaft universal coupling, drum gear coupling, non-metallic elastic element coupling, rigid coupling, etc.
The company mainly produces the industry standard JB3241-91 swap JB5513-91 swc. JB3242-93 swz series universal coupling with spider type. It can also design and produce various non-standard universal couplings, other couplings, and mechanical products for users according to special requirements. Currently, the products are mainly sold to major steel companies at home and abroad, the metallurgical steel rolling industry, and leading engine manufacturers, with an annual production capacity of more than 7000 sets.
The company’s quality policy is “quality for survival, variety for development.” In August 2000, the national quality system certification authority audited that its quality assurance system met the requirements of GB/T19002-1994 IDT ISO9002:1994 and obtained the quality system certification certificate with the registration number 0900B5711. It is the first enterprise in the coupling production industry in HangZhou City that passed the ISO9002 quality and constitution certification.
The company pursues the business purpose of “reliable quality, the supremacy of reputation, commitment to business and customer satisfaction” and welcomes customers at home and abroad to choose our products.
At the same time, the company has established long-term cooperative relations with many enterprises and warmly welcomes friends from all walks of life to visit, investigate and negotiate business!

 

How to use the coupling safely

The coupling is an intermediate connecting part of each motion mechanism, which directly impacts the regular operation of each motion mechanism. Therefore, attention must be paid to:
1. The coupling is not allowed to have more than the specified axis deflection and radial displacement so as not to affect its transmission performance.
2. The bolts of the LINS coupling shall not be loose or damaged.
3. Gear coupling and cross slide coupling shall be lubricated regularly, and lubricating grease shall be added every 2-3 months to avoid severe wear of gear teeth and serious consequences.
4. The tooth width contact length of gear coupling shall not be less than 70%; Its axial displacement shall not be more significant than 5mm
5. The coupling is not allowed to have cracks. If there are cracks, it needs to be replaced (they can be knocked with a small hammer and judged according to the sound).
6. The keys of LINS coupling shall be closely matched and shall not be loosened.
7. The tooth thickness of the gear coupling is worn. When the lifting mechanism exceeds 15% of the original tooth thickness, the operating mechanism exceeds 25%, and the broken tooth is also scrapped.
8. If the elastic ring of the pin coupling and the sealing ring of the gear coupling is damaged or aged, they should be replaced in time.

 

Certifications

 

Packaging & Shipping

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

What Industries Commonly Use Clamp Couplings and Why?

Clamp couplings are widely used in various industries due to their versatility, ease of installation, and ability to accommodate different shaft sizes and misalignments. Some of the industries where clamp couplings are commonly used include:

  1. Manufacturing: In manufacturing industries, clamp couplings are commonly employed in conveyor systems, machine tools, and material handling equipment. They provide a reliable and flexible connection between shafts, allowing for smooth power transmission and easy maintenance.
  2. Agriculture: Farm machinery and equipment often use clamp couplings to connect power take-off shafts, ensuring efficient power transfer from the tractor to various implements like mowers, balers, and harvesters.
  3. Food and Beverage: The food and beverage industry requires couplings that are easy to clean and maintain. Stainless steel clamp couplings are commonly used in food processing equipment due to their corrosion resistance and hygienic design.
  4. Packaging: Packaging machinery often uses clamp couplings to connect rotating components, such as rollers and conveyors, ensuring precise and synchronized movement during the packaging process.
  5. Oil and Gas: In the oil and gas industry, clamp couplings are used in various applications, including pumps, compressors, and drilling equipment. Stainless steel clamp couplings are favored in offshore and corrosive environments.
  6. Automotive: In automotive manufacturing, clamp couplings find applications in power transmission systems, steering columns, and drivetrain components.
  7. Marine: The marine industry often employs clamp couplings in propulsion systems and auxiliary machinery, especially when corrosion resistance and reliability are critical.
  8. Pharmaceutical: Pharmaceutical manufacturing equipment requires couplings that meet stringent hygiene standards. Stainless steel clamp couplings are suitable for pharmaceutical applications due to their cleanability and resistance to contamination.
  9. Mining: Mining machinery relies on robust and reliable couplings to withstand heavy loads and harsh operating conditions. Clamp couplings are commonly used in conveyors, crushers, and other mining equipment.

The widespread use of clamp couplings across industries can be attributed to their ability to provide a secure and backlash-free connection between shafts, accommodate misalignment, and handle varying torque and speed requirements. Additionally, their simple design and ease of maintenance make them a popular choice in numerous industrial applications.

clamp coupling

Potential Causes of Failure in Clamp Couplings and Prevention

While clamp couplings are robust and reliable, certain factors can lead to failure if not addressed properly. Here are some potential causes of failure and the corresponding prevention measures:

  1. Insufficient Torque: If the coupling is not tightened to the recommended torque, it may slip or come loose during operation. To prevent this, always follow the manufacturer’s torque specifications and use a torque wrench during installation.
  2. Material Fatigue: Repeated load cycles and excessive vibration can lead to material fatigue and eventual failure. Choosing high-quality materials and performing regular inspections can help detect fatigue and replace the coupling before failure occurs.
  3. Corrosion: In corrosive environments, the coupling’s material may degrade over time, compromising its strength. Using stainless steel or other corrosion-resistant materials can prevent this issue.
  4. Improper Alignment: Misalignment between shafts can put undue stress on the coupling, leading to premature failure. Properly align the shafts during installation to avoid this problem.
  5. Overloading: Exceeding the maximum torque or speed limits specified by the manufacturer can cause the coupling to fail. Stay within the recommended operating parameters to prevent overloading.
  6. Temperature Extremes: Extreme temperatures can affect the material properties and cause the coupling to become brittle or lose its integrity. Select a coupling rated for the operating temperature range of the application.
  7. Poor Maintenance: Neglecting regular maintenance can lead to undetected wear, damage, or contamination, which may ultimately result in failure. Implement a proactive maintenance schedule and inspect the coupling regularly.
  8. Foreign Object Debris (FOD): Foreign particles or debris caught between the coupling components can lead to uneven loads and wear. Keep the coupling and its surroundings clean to avoid FOD-related issues.
  9. Improper Installation: Incorrectly installing the coupling, such as using incorrect fasteners or not following the manufacturer’s guidelines, can compromise its performance and durability. Always refer to the installation instructions and seek professional help if needed.
  10. Environmental Factors: Consider the specific environmental conditions of the application, such as humidity, chemicals, or abrasive substances, and select a coupling that can withstand these conditions.

By understanding and addressing these potential causes of failure, users can ensure the longevity and reliable performance of clamp couplings in their mechanical systems.

clamp coupling

Handling Misalignment with Clamp Couplings

Yes, clamp couplings are designed to handle certain degrees of misalignment between shafts effectively. They can accommodate both angular and parallel misalignments, making them versatile for various mechanical systems.

The design of clamp couplings allows for a certain degree of flexibility and forgiveness in the coupling’s connection. When the shafts are not perfectly aligned due to angular or parallel misalignment, the clamp coupling can compensate for these variations.

The main factors contributing to the clamp coupling’s ability to handle misalignment are:

  • Flexible Material: Clamp couplings are often made of materials like aluminum, stainless steel, or other alloys with some elasticity. This flexibility enables them to absorb and compensate for minor misalignments.
  • Split Design: Clamp couplings usually have a split design with one or more screws or bolts that can be tightened to secure the coupling around the shafts. This design allows for easy installation and adjustment, making it possible to accommodate slight misalignments during assembly.
  • Tightening Mechanism: The screws or bolts used to fasten the clamp coupling can be tightened to the appropriate torque, providing a secure connection while still allowing for a certain amount of movement to handle misalignment.

However, it’s important to note that clamp couplings have limitations when it comes to misalignment. Excessive misalignment can lead to increased wear on the coupling components and shafts, reducing the coupling’s lifespan and potentially causing failure. Therefore, it’s essential to ensure that the misalignment does not exceed the coupling’s specified limits.

For more significant misalignments or applications with constant large misalignments, flexible couplings like elastomeric couplings or gear couplings may be more suitable. It’s crucial to select the appropriate coupling type based on the specific misalignment requirements of the mechanical system.

In conclusion, while clamp couplings can handle certain degrees of misalignment effectively, it is essential to stay within the recommended misalignment limits to maintain the coupling’s performance and longevity.

China wholesaler Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling  China wholesaler Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling
editor by CX 2024-05-17

China wholesaler Flexible Jaw Coupling Aluminum or Steel Shaft Coupling Setscrew or Clamping

Product Description

CNC Machine Plum Coupling Flexible Spider Jaw Shaft Coupling
Material Stainless Steel,Aluminum Alloy,Cast Iron,Rubber Spider
Model NO. JC-C JC-S JC-L
Bore Type Finished Bore, Stock Bore
Bore Diameter 3mm-80mm, customized
Torque Range 2Nm-1880Nm
Surface Treatment Blacking, Anodizing, Zinc Plated, Polishing

Applications
Mainly used in the mining, metallurgical, cement, chemicals, construction, building materials, electric power, telecommunications, textiles, and transportation departments.
Such as
Conveyor: Belt conveyor.AFC conveyor.Chain conveyor.Screw conveyor.
Pump: Water pump, oil pump, slush pump,etc
Fan: Draft fan,,fanner, boiler fan,etc
Excavator: Bucket excavator. Bucket wheel excavators.Bucket wheel stacker reclaimer.
Crane: Tower crane.Gantry crane.Bridge crane.
Others: Various elevators.Coal plough.Ball mill.Crusher.Recreation machine.
Blender equipment.Centrifuger.Washer.Leather-making machine.machine for recreation park mixer wire drawing machine.Extruder,dregs crusher of boiler.Plastic feeder.Rubber smelling machine.etc.

Related Products
Timing belt pulleys, timing pulley bars, timing belt clamping plates.

Shaft locking devices (assemblies) and shrink discs: could be alternative for Ringfeder, Sati, Chiaravalli, BEA, Tollok, etc.

V belt pulleys and taper lock bush.

Sprockets, idler, and plate wheels.

Gear wheels and racks.

Shaft couplings: miniature coupling, curved tooth coupling, chain coupling, HRC coupling, normex coupling, FCL coupling, GE coupling, rigid and flexible coupling, jaw coupling, disc coupling, multi-beam coupling, universal joint, torque limiter, shaft collars.

Forging, Casting, Stamping Parts.
Other customized power transmission products and Machining Parts (OEM).

Package&Shipping
Package  Standard suitable package / Pallet or container.
 Polybag inside export carton outside, blister and Tape and reel package available.
 If customers have specific requirements for the packaging, we will gladly accommodate.
Shipping

 10-20working days ofter payment receipt comfirmed (based on actual quantity).
 Packing standard export packing or according to customers demand.   

 Professional goods shipping forward.

About MIGHTY
ZheJiang Mighty Machinery Co., Ltd. specializes in manufacturing Mechanical Power Transmission Products.We Mighty is the division/branch of SCMC Group, which is a wholly state-owned company, established in 1980.

About Mighty:
-3 manufacturing factories, we have 5 technical staff, our FTY have strong capacity for design and process design, and more than 70 workers and double shift eveyday.
-Large quality of various material purchase and stock in warhouse which ensure the low cost for the material and production in time.
-Strick quality control are apply in the whole production. 
we have incoming inspection,process inspection and final production inspection which can ensure the perfect of the goods quality.
-14 years of machining experience. Long time cooperate with the Global Buyer, make us easy to understand the csutomer and handle the export. MIGHTY’s products are mainly exported to Europe, America and the Middle East market. With the top-ranking management, professional technical support and abundant export experience, MIGHTY has established lasting and stable business partnership with many world famous companies and has got good reputation from CHINAMFG customers in international sales.

FAQ
Q: Are you trading company or manufacturer?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.
We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit. To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

How do Clamp Couplings Contribute to Reducing Backlash and Resonance in Rotating Machinery?

Clamp couplings play a crucial role in reducing backlash and resonance in rotating machinery, enhancing the overall performance and reliability of the system. Here’s how they achieve this:

1. Backlash Reduction:

Backlash is the play or clearance between mating components in a mechanical system. In rotating machinery, backlash can lead to lost motion, reduced precision, and inefficiencies. Clamp couplings offer several features that help minimize backlash:

  • Zero-Backlash Design: Some clamp couplings are designed with a split hub and a clamping mechanism that ensures a tight fit around the shafts. This zero-backlash design eliminates any clearance between the coupling and the shafts, reducing or even eliminating backlash.
  • High Clamping Force: Clamp couplings exert a strong clamping force on the shafts, ensuring a secure and rigid connection. This prevents any relative movement between the coupling and the shafts, further reducing backlash.

2. Resonance Damping:

Resonance occurs when the natural frequency of a rotating system matches the frequency of external forces or disturbances. This can lead to excessive vibrations and potential damage to the machinery. Clamp couplings can help dampen resonance in the following ways:

  • Material Selection: High-quality materials like stainless steel or aluminum alloy are commonly used in clamp couplings. These materials possess excellent damping properties, dissipating vibrations and minimizing resonance effects.
  • Precision Machining: Clamp couplings are precisely machined to maintain balance and reduce vibration during operation. Balanced couplings minimize the likelihood of resonant frequencies being excited, contributing to a smoother operation.
  • Torsional Stiffness: Clamp couplings offer controlled torsional stiffness, which helps prevent the buildup of excessive vibration amplitudes and reduces resonance occurrences.

3. Misalignment Compensation:

Another factor contributing to backlash and resonance is misalignment between shafts. Clamp couplings can accommodate a certain degree of angular, parallel, and axial misalignments, reducing the impact of misalignment-induced backlash and vibrations.

Overall, clamp couplings provide a secure and precise connection between shafts, minimizing backlash and resonance in rotating machinery. By choosing the appropriate clamp coupling based on the specific requirements of the application, engineers can optimize the performance and efficiency of the rotating system.

clamp coupling

Potential Causes of Failure in Clamp Couplings and Prevention

While clamp couplings are robust and reliable, certain factors can lead to failure if not addressed properly. Here are some potential causes of failure and the corresponding prevention measures:

  1. Insufficient Torque: If the coupling is not tightened to the recommended torque, it may slip or come loose during operation. To prevent this, always follow the manufacturer’s torque specifications and use a torque wrench during installation.
  2. Material Fatigue: Repeated load cycles and excessive vibration can lead to material fatigue and eventual failure. Choosing high-quality materials and performing regular inspections can help detect fatigue and replace the coupling before failure occurs.
  3. Corrosion: In corrosive environments, the coupling’s material may degrade over time, compromising its strength. Using stainless steel or other corrosion-resistant materials can prevent this issue.
  4. Improper Alignment: Misalignment between shafts can put undue stress on the coupling, leading to premature failure. Properly align the shafts during installation to avoid this problem.
  5. Overloading: Exceeding the maximum torque or speed limits specified by the manufacturer can cause the coupling to fail. Stay within the recommended operating parameters to prevent overloading.
  6. Temperature Extremes: Extreme temperatures can affect the material properties and cause the coupling to become brittle or lose its integrity. Select a coupling rated for the operating temperature range of the application.
  7. Poor Maintenance: Neglecting regular maintenance can lead to undetected wear, damage, or contamination, which may ultimately result in failure. Implement a proactive maintenance schedule and inspect the coupling regularly.
  8. Foreign Object Debris (FOD): Foreign particles or debris caught between the coupling components can lead to uneven loads and wear. Keep the coupling and its surroundings clean to avoid FOD-related issues.
  9. Improper Installation: Incorrectly installing the coupling, such as using incorrect fasteners or not following the manufacturer’s guidelines, can compromise its performance and durability. Always refer to the installation instructions and seek professional help if needed.
  10. Environmental Factors: Consider the specific environmental conditions of the application, such as humidity, chemicals, or abrasive substances, and select a coupling that can withstand these conditions.

By understanding and addressing these potential causes of failure, users can ensure the longevity and reliable performance of clamp couplings in their mechanical systems.

clamp coupling

Advantages of Using a Clamp Coupling

A clamp coupling offers several advantages compared to other types of couplings, making it a popular choice in various mechanical systems:

  • Easy Installation: Clamp couplings are simple to install and require minimal tools and expertise. The design allows for quick assembly and disassembly, making maintenance and shaft replacement convenient.
  • Cost-Effective: With a straightforward design and fewer components, clamp couplings are cost-effective to manufacture and purchase.
  • High Torque Transmission: Clamp couplings can handle high torque loads, making them suitable for heavy-duty applications in industries like manufacturing, mining, and construction.
  • Zero Backlash: The clamping mechanism ensures a tight fit between the shafts and the hubs, resulting in zero backlash. This feature is vital for applications that require accurate and precise motion transfer.
  • Flexibility: Clamp couplings can accommodate different shaft sizes and materials, providing flexibility in system design and shaft compatibility.
  • Compact Design: The compact and lightweight design of clamp couplings makes them ideal for applications with space constraints.
  • No Lubrication Needed: Unlike some other couplings, clamp couplings do not require lubrication, reducing maintenance requirements and eliminating the risk of leakage or contamination in certain environments.
  • High Misalignment Tolerance: Clamp couplings can handle moderate levels of angular, parallel, and axial misalignment, ensuring reliable operation even when shafts are not perfectly aligned.
  • Reduced Downtime: The ease of installation and maintenance of clamp couplings contributes to reduced downtime during equipment repairs or replacements.

Due to these advantages, clamp couplings are widely used in various industries and mechanical setups for their simplicity, reliability, and cost-effectiveness in transmitting torque and rotational motion between shafts.

China wholesaler Flexible Jaw Coupling Aluminum or Steel Shaft Coupling Setscrew or Clamping  China wholesaler Flexible Jaw Coupling Aluminum or Steel Shaft Coupling Setscrew or Clamping
editor by CX 2024-05-15

China best Miniature Flexible Jaw Quick Aluminum Clamp Style Spider Flexible Shaft Coupling Motor

Product Description

Product Name

Miniature Flexible Jaw Quick Aluminum Clamp Style Spider Flexible Shaft Coupling Motor

Material

Aluminum alloy,stainless steel,brass

Surface treatment

Natural color anode

Customized service

Support light customization and logo customization

 Size  To be customized
 Weight  To be customized

Remarks

The default engraving brand name and size of the product. If you need not engraving, please contact the customer service for comments

Packaging Details Carton box with anti-static package,carton plus with wooden case.
Main Products Shaft Parts, Timing Belt Pulley, Gears, CNC Machining Parts, Sheet Metal Fabrication
Certifications(2) ISO9001:2015, IPMS
Applicable Industries Building Material Shops, Manufacturing Plant, Food & Beverage Factory, Farms
Supply Ability 100000 Piece/Pieces per Month
Dimension oem provided
Surface finish anodized
Lead Time 25 days
Application Furniture,cabinet
Custom OEM and ODM services are welcome,we can make cutom LOGO and products according to customer’s requests.
Quality control Our Finished product inspection,Warranty available
service Swiss machining;deburring;lathe/turning;5 axis;micromachining
Color
 
silver,gold,black,red,bulue,and according to the customer requests.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

What Industries Commonly Use Clamp Couplings and Why?

Clamp couplings are widely used in various industries due to their versatility, ease of installation, and ability to accommodate different shaft sizes and misalignments. Some of the industries where clamp couplings are commonly used include:

  1. Manufacturing: In manufacturing industries, clamp couplings are commonly employed in conveyor systems, machine tools, and material handling equipment. They provide a reliable and flexible connection between shafts, allowing for smooth power transmission and easy maintenance.
  2. Agriculture: Farm machinery and equipment often use clamp couplings to connect power take-off shafts, ensuring efficient power transfer from the tractor to various implements like mowers, balers, and harvesters.
  3. Food and Beverage: The food and beverage industry requires couplings that are easy to clean and maintain. Stainless steel clamp couplings are commonly used in food processing equipment due to their corrosion resistance and hygienic design.
  4. Packaging: Packaging machinery often uses clamp couplings to connect rotating components, such as rollers and conveyors, ensuring precise and synchronized movement during the packaging process.
  5. Oil and Gas: In the oil and gas industry, clamp couplings are used in various applications, including pumps, compressors, and drilling equipment. Stainless steel clamp couplings are favored in offshore and corrosive environments.
  6. Automotive: In automotive manufacturing, clamp couplings find applications in power transmission systems, steering columns, and drivetrain components.
  7. Marine: The marine industry often employs clamp couplings in propulsion systems and auxiliary machinery, especially when corrosion resistance and reliability are critical.
  8. Pharmaceutical: Pharmaceutical manufacturing equipment requires couplings that meet stringent hygiene standards. Stainless steel clamp couplings are suitable for pharmaceutical applications due to their cleanability and resistance to contamination.
  9. Mining: Mining machinery relies on robust and reliable couplings to withstand heavy loads and harsh operating conditions. Clamp couplings are commonly used in conveyors, crushers, and other mining equipment.

The widespread use of clamp couplings across industries can be attributed to their ability to provide a secure and backlash-free connection between shafts, accommodate misalignment, and handle varying torque and speed requirements. Additionally, their simple design and ease of maintenance make them a popular choice in numerous industrial applications.

clamp coupling

Comparison of Clamp Couplings with Jaw Couplings and Bellows Couplings

Clamp couplings, jaw couplings, and bellows couplings are all common types of couplings used in mechanical power transmission. Each type has its unique design and features, making them suitable for different applications. Here’s a comparison of these couplings:

  1. Design:

Clamp Couplings: Clamp couplings consist of a split hub with screws that tighten around the shafts, providing a secure and balanced connection.

Jaw Couplings: Jaw couplings have two hubs with curved jaws that interlock to transmit torque. They can accommodate a certain degree of misalignment.

Bellows Couplings: Bellows couplings use a thin-walled metallic bellows to transmit torque while compensating for misalignment. They are typically more flexible than clamp couplings and jaw couplings.

  1. Misalignment:

Clamp Couplings: Clamp couplings can handle a small amount of angular misalignment but are better suited for applications with precise alignment.

Jaw Couplings: Jaw couplings can accommodate angular and axial misalignment but have limitations on radial misalignment.

Bellows Couplings: Bellows couplings can handle higher levels of misalignment, including angular, radial, and axial misalignment.

  1. Vibration Damping:

Clamp Couplings: Some clamp couplings can provide a degree of vibration damping due to their material properties, but they are not specifically designed for this purpose.

Jaw Couplings: Jaw couplings have some vibration absorption capabilities due to the flexibility of the elastomeric spider element.

Bellows Couplings: Bellows couplings are known for their excellent vibration damping characteristics, making them suitable for applications where vibration isolation is critical.

  1. Backlash:

Clamp Couplings: Clamp couplings typically have minimal backlash, providing precise torque transmission.

Jaw Couplings: Jaw couplings have a small amount of backlash due to the clearance between the jaws and the spider element.

Bellows Couplings: Bellows couplings have negligible backlash, making them suitable for applications requiring high precision.

  1. Temperature and Environment:

Clamp Couplings: Clamp couplings are generally suitable for a wide range of temperatures and environments, depending on the material used.

Jaw Couplings: Jaw couplings are versatile and can operate in various conditions, but their elastomeric elements may have temperature limitations.

Bellows Couplings: Bellows couplings can withstand high temperatures and are often used in demanding environments.

  1. Cost:

Clamp Couplings: Clamp couplings are often more cost-effective compared to jaw couplings and bellows couplings.

Jaw Couplings: Jaw couplings are generally affordable and offer a good balance between cost and performance.

Bellows Couplings: Bellows couplings are more expensive than clamp couplings and jaw couplings due to their precision and high-performance characteristics.

When selecting a coupling, it is essential to consider the specific requirements of the application, including torque, misalignment, precision, and environmental factors. Consulting with coupling manufacturers or engineers can help in choosing the most suitable coupling for a particular mechanical system.

clamp coupling

Can Clamp Couplings Accommodate Different Shaft Sizes and Materials?

Yes, clamp couplings are designed to accommodate different shaft sizes and materials, making them versatile for various mechanical applications. The flexibility in shaft size compatibility is one of the key advantages of using clamp couplings.

Clamp couplings typically come in a range of sizes, allowing them to fit various shaft diameters. The clamp design allows for easy adjustment and tightening around the shaft, creating a secure connection. This adjustability makes clamp couplings suitable for connecting shafts of different sizes without the need for precise machining or customizations.

Moreover, clamp couplings can handle different materials used for shafts, including steel, stainless steel, aluminum, and even non-metallic materials like plastics. As long as the shaft material is strong enough to handle the intended torque and load requirements, a clamp coupling can effectively connect the shafts.

When selecting a clamp coupling, it is essential to consider the specific application requirements, including torque, speed, misalignment, and environmental conditions. Properly matching the coupling size and material to the shafts’ specifications ensures a reliable and efficient connection, reducing the risk of premature wear or failure.

China best Miniature Flexible Jaw Quick Aluminum Clamp Style Spider Flexible Shaft Coupling Motor  China best Miniature Flexible Jaw Quick Aluminum Clamp Style Spider Flexible Shaft Coupling Motor
editor by CX 2024-05-09

China Hot selling Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling

Product Description

Flexible flex Fluid Chain Jaw flange Gear Rigid Spacer PIN HRC MH NM universal Fenaflex Oldham spline clamp tyre grid hydraulic servo motor shaft Coupling
 

Product Description

The function of Shaft coupling:
1. Shafts for connecting separately manufactured units such as motors and generators.
2. If any axis is misaligned.
3. Provides mechanical flexibility.
4. Absorb the transmission of impact load.
5. Prevent overload

We can provide the following couplings.
 

Rigid coupling Flange coupling Oldham coupling
Sleeve or muff coupling Gear coupling Bellow coupling
Split muff coupling Flexible coupling Fluid coupling
Clamp or split-muff or compression coupling Universal coupling Variable speed coupling
Bushed pin-type coupling Diaphragm coupling Constant speed coupling

Company Profile

We are an industrial company specializing in the production of couplings. It has 3 branches: steel casting, forging, and heat treatment. Main products: cross shaft universal coupling, drum gear coupling, non-metallic elastic element coupling, rigid coupling, etc.
The company mainly produces the industry standard JB3241-91 swap JB5513-91 swc. JB3242-93 swz series universal coupling with spider type. It can also design and produce various non-standard universal couplings, other couplings, and mechanical products for users according to special requirements. Currently, the products are mainly sold to major steel companies at home and abroad, the metallurgical steel rolling industry, and leading engine manufacturers, with an annual production capacity of more than 7000 sets.
The company’s quality policy is “quality for survival, variety for development.” In August 2000, the national quality system certification authority audited that its quality assurance system met the requirements of GB/T19002-1994 IDT ISO9002:1994 and obtained the quality system certification certificate with the registration number 0900B5711. It is the first enterprise in the coupling production industry in HangZhou City that passed the ISO9002 quality and constitution certification.
The company pursues the business purpose of “reliable quality, the supremacy of reputation, commitment to business and customer satisfaction” and welcomes customers at home and abroad to choose our products.
At the same time, the company has established long-term cooperative relations with many enterprises and warmly welcomes friends from all walks of life to visit, investigate and negotiate business!

 

How to use the coupling safely

The coupling is an intermediate connecting part of each motion mechanism, which directly impacts the regular operation of each motion mechanism. Therefore, attention must be paid to:
1. The coupling is not allowed to have more than the specified axis deflection and radial displacement so as not to affect its transmission performance.
2. The bolts of the LINS coupling shall not be loose or damaged.
3. Gear coupling and cross slide coupling shall be lubricated regularly, and lubricating grease shall be added every 2-3 months to avoid severe wear of gear teeth and serious consequences.
4. The tooth width contact length of gear coupling shall not be less than 70%; Its axial displacement shall not be more significant than 5mm
5. The coupling is not allowed to have cracks. If there are cracks, it needs to be replaced (they can be knocked with a small hammer and judged according to the sound).
6. The keys of LINS coupling shall be closely matched and shall not be loosened.
7. The tooth thickness of the gear coupling is worn. When the lifting mechanism exceeds 15% of the original tooth thickness, the operating mechanism exceeds 25%, and the broken tooth is also scrapped.
8. If the elastic ring of the pin coupling and the sealing ring of the gear coupling is damaged or aged, they should be replaced in time.

 

Certifications

 

Packaging & Shipping

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

How do Clamp Couplings Contribute to Reducing Backlash and Resonance in Rotating Machinery?

Clamp couplings play a crucial role in reducing backlash and resonance in rotating machinery, enhancing the overall performance and reliability of the system. Here’s how they achieve this:

1. Backlash Reduction:

Backlash is the play or clearance between mating components in a mechanical system. In rotating machinery, backlash can lead to lost motion, reduced precision, and inefficiencies. Clamp couplings offer several features that help minimize backlash:

  • Zero-Backlash Design: Some clamp couplings are designed with a split hub and a clamping mechanism that ensures a tight fit around the shafts. This zero-backlash design eliminates any clearance between the coupling and the shafts, reducing or even eliminating backlash.
  • High Clamping Force: Clamp couplings exert a strong clamping force on the shafts, ensuring a secure and rigid connection. This prevents any relative movement between the coupling and the shafts, further reducing backlash.

2. Resonance Damping:

Resonance occurs when the natural frequency of a rotating system matches the frequency of external forces or disturbances. This can lead to excessive vibrations and potential damage to the machinery. Clamp couplings can help dampen resonance in the following ways:

  • Material Selection: High-quality materials like stainless steel or aluminum alloy are commonly used in clamp couplings. These materials possess excellent damping properties, dissipating vibrations and minimizing resonance effects.
  • Precision Machining: Clamp couplings are precisely machined to maintain balance and reduce vibration during operation. Balanced couplings minimize the likelihood of resonant frequencies being excited, contributing to a smoother operation.
  • Torsional Stiffness: Clamp couplings offer controlled torsional stiffness, which helps prevent the buildup of excessive vibration amplitudes and reduces resonance occurrences.

3. Misalignment Compensation:

Another factor contributing to backlash and resonance is misalignment between shafts. Clamp couplings can accommodate a certain degree of angular, parallel, and axial misalignments, reducing the impact of misalignment-induced backlash and vibrations.

Overall, clamp couplings provide a secure and precise connection between shafts, minimizing backlash and resonance in rotating machinery. By choosing the appropriate clamp coupling based on the specific requirements of the application, engineers can optimize the performance and efficiency of the rotating system.

clamp coupling

Clamp Couplings and Damping Vibrations/Noise

Yes, clamp couplings can help dampen vibrations and reduce noise in mechanical systems to some extent. While not specifically designed as vibration isolators, clamp couplings can mitigate vibrations and noise due to their unique design and material properties.

The design of clamp couplings involves a split hub with screws that securely fasten around the shafts. This design offers several benefits:

  1. Damping Effect: The material of the coupling can absorb and dampen some of the vibrations generated by rotating equipment. Elastomeric elements or flexible materials used in some clamp couplings can help attenuate vibrations.
  2. Reduction of Resonance: Vibrations in rotating machinery can sometimes lead to resonance, causing excessive oscillations. Clamp couplings can help break the resonance cycle and prevent amplification of vibrations.
  3. Torsional Compliance: Some clamp couplings exhibit a degree of torsional compliance, which means they can tolerate small angular misalignments and dampen torsional vibrations.
  4. Transmissible Torque Variation: In some cases, clamp couplings can absorb torque spikes or variations, reducing the impact of sudden changes in load.

While clamp couplings can provide some level of vibration and noise reduction, their primary function is to transmit torque and accommodate misalignment between shafts. For more demanding vibration isolation or noise reduction applications, specialized components such as flexible couplings with damping features or dedicated vibration isolation mounts may be more suitable.

It is essential to consider the specific requirements of the mechanical system and consult with experts to determine the most appropriate coupling or isolator for achieving the desired level of vibration and noise reduction.

clamp coupling

Can Clamp Couplings Accommodate Different Shaft Sizes and Materials?

Yes, clamp couplings are designed to accommodate different shaft sizes and materials, making them versatile for various mechanical applications. The flexibility in shaft size compatibility is one of the key advantages of using clamp couplings.

Clamp couplings typically come in a range of sizes, allowing them to fit various shaft diameters. The clamp design allows for easy adjustment and tightening around the shaft, creating a secure connection. This adjustability makes clamp couplings suitable for connecting shafts of different sizes without the need for precise machining or customizations.

Moreover, clamp couplings can handle different materials used for shafts, including steel, stainless steel, aluminum, and even non-metallic materials like plastics. As long as the shaft material is strong enough to handle the intended torque and load requirements, a clamp coupling can effectively connect the shafts.

When selecting a clamp coupling, it is essential to consider the specific application requirements, including torque, speed, misalignment, and environmental conditions. Properly matching the coupling size and material to the shafts’ specifications ensures a reliable and efficient connection, reducing the risk of premature wear or failure.

China Hot selling Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling  China Hot selling Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling
editor by CX 2024-05-06

China Professional CHINAMFG Flexible Jaw Couplings Standard Taper Clamping Sleeve Ring Hubs Afn Bfn Ah Sh CF Cfn Df Dfn Zs-Dkm-Sh Zrs Zr Btan Sban Afn-Sb Special SD Shaft Coupling

Product Description

ROTEX Flexible Jaw Couplings Standard Taper Clamping Sleeve Ring Hubs AFN BFN AH SH CF CFN DF DFN ZS-DKM-SH ZRS ZR BTAN SBAN AFN-SB Special SD Shaft Coupling
 

ROTEX torsionally flexible jaw couplings

ROTEX torsionally flexible jaw couplings are elastomer couplings characterized by a compact design.

In spite of low weights and mass moments of inertia of the elastomer couplings they are able to transmit high torques. The compact shaft couplings are characterized by a long service life and sound operating characteristics generated by allover machining.

Overview: ROTEX torsionally flexible jaw couplings
CHINAMFG torsionally flexible jaw couplings are elastomer couplings characterized by a compact design.

ROTEX Standard
0 – 35,000 Nm / torsionally flexible jaw coupling

The original – renowned industrial standard

The torsionally flexible jaw coupling CHINAMFG Standard is an elastomer coupling with feather keyway and particularly low-priced due to its simple structure.
For mounting the hubs of the elastomer coupling are simply pushed on the shafts and axially fastened via setscrews.

Our flexible elastomer coupling CHINAMFG Standard is provided with splines acc. to DIN and SAE as a standard.

The torsionally flexible CHINAMFG couplings are suitable for universal use and applied as a flexible shaft connection in almost all ranges of general mechanical and plant engineering.

Features
torsionally flexible coupling for torsional vibration-damping power transmission
low-cost standard type
standard spiders made of high temperature-resistant T-PUR
splines acc. to DIN and SAE
complying with ATEX (acc. to EU directive 2014/34/EU)

Product Details
The coupling hubs of the flexible shaft coupling are available in the following materials:
– steel
– sintered steel
– stainless steel
– aluminium wrought products
– aluminium diecast
– cast iron
– nodular iron

ROTEX taper clamping sleeve
0 – 12,500 Nm / torsionally flexible jaw coupling

Jaw coupling can be combined with taper clamping sleeves

The torsionally flexible jaw coupling CHINAMFG for taper clamping sleeve is an elastomer coupling that can be combined with various types of taper clamping sleeves.

The compact design of this elastomer coupling in combination with the slide fit facilitates the assembly and axial alignment of the flexible shaft coupling.

The clamping screws to be used additionally secure the friction connection by a positive-locking fit.The torsionally flexible jaw coupling CHINAMFG for taper clamping sleeve is an elastomer coupling that can be combined with various types of taper clamping sleeves.
The compact design of this elastomer coupling in combination with the slide fit facilitates the assembly and axial alignment of the flexible shaft coupling.
The clamping screws to be used additionally secure the friction connection by a positive-locking fit.

Features
flexible jaw coupling for combining with taper clamping sleeves / taperlock clamping sleeves
slide fit facilitates axial alignment of the coupling
compact design
Additional protection by positive-locking fit, each half of the clamping screws being in the coupling hub and taper clamping sleeve
complying with ATEX (acc. to EU directive 2014/34/EU)

ROTEX clamping ring hubs
0 – 4,500 Nm / torsionally flexible jaw coupling

Jaw coupling with clamping ring hubs for fricitionally engaged shaft-hub-connections

CHINAMFG clamping ring hubs are torsionally flexible elastomer couplings with an integrated clamping system for frictionally engaged shaft-hub-connections.

Thanks to the integrated clamping system the CHINAMFG clamping ring hubs are able to transmit high friction torques. The internal clamping screws allow for easy assembly of the coupling.

Due to the rotation symmetry this type is additionally characterized by particularly smooth running

Features
torsionally flexible jaw couplings with integrated clamping system
friction connection for cylindrical shafts
application up to a circumferential speed of 40 m/s 
particularly smooth running
high friction torques

ROTEX clamping hubs
0 – 4,500 Nm / torsionally flexible jaw coupling with clamping hubs

Jaw coupling with clamping hubs for spline bores acc. to DIN and SAE

CHINAMFG clamping hubs are torsionally flexible elastomer couplings with clamping hubs and particularly suitable for applications with reversing operation.

Our clamping couplings are provided with spline bores acc. to DIN and SAE as a standard (for standard splines see catalogue). Clamping, i. e. axial fastening of the hub, is realised via cap screws.

Easy assembly and disassembly of the hubs of this clamping coupling.

Features
fail-safe clamping coupling (clamping hubs)
standard hub material steel
suitable in combination with spline bores acc. to DIN 5480, DIN 5482, SAE J498 as well as DIN 9611 / ISO 500 (p. t. o. shaft), DIN 5463 (ISO 14), DIN 5481 and DIN 5472
balanced based on 3D-CAD data
particularly suitable for applications with reversing operation

ROTEX AFN
0 – 35,000 Nm / coupling as a flange type

Jaw coupling as a double flange type

CHINAMFG AFN is a torsionally flexible elastomer coupling as a double-flange type and particularly suitable for applications in heavy engineering.

Type AFN of the CHINAMFG elastomer coupling is characterized by the double flange type allowing for radial assembly and disassembly of the shaft coupling or elastomer without displacing the driving or driven side.

The flange hub 4N of the torsionally flexible jaw coupling as a flange type CHINAMFG AFN is made of steel and the driving flange 3Na is made of GJS.

Features
fail-safe jaw coupling
complying with UKEX (acc. to UKEX directive SI 2016:1107)
complying with ATEX (acc. to EU directive 2014/34/EU)
application up to a circumferential speed of 40 m/s 
compensating for displacements (axial, radial, angular)

ROTEX BFN
0 – 35,000 Nm / coupling as a flange type

ROTEX BFN is a torsionally flexible elastomer coupling as a flange type (flange coupling) and particularly suitable for applications in heavy engineering.

Type BFN of the CHINAMFG elastomer coupling is characterized by the flange type allowing for radial assembly and disassembly of the shaft coupling or the elastomer without displacing the driving or driven side.

The flange hub 4N of the torsionally jaw coupling as a flange type CHINAMFG BFN is made of steel and the driving flange 3Na is made of GJS.

Features
fail-safe jaw coupling
low inertia
complying with ATEX (acc. to EU directive 2014/34/EU)
complying with UKEX (acc. to UKEX directive SI 2016:1107)
damping vibrations

ROTEX AH
0 – 12,500 Nm / torsionally flexible coupling with split hubs

Radial assembly/disassembly of the jaw coupling via 4 screws only

The torsionally flexible jaw coupling CHINAMFG AH is an elastomer coupling with split hubs (half shell coupling). This design is also referred to as drop-our center design coupling, half shell coupling, clamping coupling, coupling with split hubs or elastomer coupling with split clamping hub.

The hubs of the CHINAMFG elastomer coupling type A-H are split. Easy radial asssembly/disassembly of the half shell coupling made by tightening and unscrewing 4 screws only. The version is available both with and without feather keyway.

Features
assembly/disassembly via 4 screws
compensating for displacements (axial, radial, angular)
maintenance-free
complying with ATEX (acc. to EU directive 2014/34/EU)
complying with UKEX (acc. to UKEX directive SI 2016:1107)

ROTEX SH
0 – 4,500 Nm / torsionally flexible coupling with split hubs

Coupling with split hubs / SPLIT hubs

The torsionally flexible jaw coupling CHINAMFG SH is an elastomer coupling with split hubs / SPLIT hubs (half shell coupling) easy to service and is characterized by easy assembly and disassembly.
This design is also referred to as drop-our center design coupling, half shell coupling, clamping coupling, coupling with split hubs or elastomer coupling with split clamping hub.

Elastomer coupling with split hubs / SPLIT hubs:
The hubs of the half shell coupling CHINAMFG SH have been split into 2 halves precisely, mechanically and reliably by “cracking”. A rough surface with positive-locking connection ensuring an accurate fit of the 2 halves is generated. The contoured, rough cracked surfaces ensure ideal centering of the hub halves. The split hubs allow to assemble and disassemble the elastomer coupling radially via 4 screws without displacing the adjacent power packs. This makes the elastomer coupling with split clamping hub particularly easy to assemble and service.

Features
material cast iron
complying with ATEX (acc. to EU directive 2014/34/EU)
easy assembly/disassembly via 4 screws
centering of both hub halves through the cracked surface
displacing the power packs is not necessary for assembly

ROTEX CF
0 – 35,000 Nm / jaw coupling with flange connection on 1 side

The torsionally flexible jaw coupling CHINAMFG CF is an elastomer coupling with a flange connection on 1 side (flange coupling) and particularly suitable for applications in heavy engineering.

Type CF of the CHINAMFG elastomer coupling is characterized by a short mounting length of the flange connection on 1 side.

The driving flanges and hubs are available from stock. The flange is available from stock both with tapped holes and without hole/without centering.

Features
torsionally flexible jaw coupling as a flange type for heavy engineering
driving flanges and hubs available from stock
flange with tapped holes available from stock
flange without bore and without centering available from stock
material: driving flange 3b made of GGG40 (nodular iron)

ROTEX CFN
0 – 35,000 Nm / jaw coupling with flange connection on 1 side

The torsionally flexible jaw coupling CHINAMFG CFN is an elastomer coupling with a flange connection on 1 side (flange coupling) and particularly suitable for applications in heavy engineering.

Type CFN of the CHINAMFG elastomer coupling is characterized by the double flange design allowing for radial assembly and disassembly of the shaft coupling or elastomer without displacing the driving or driven side.

The driving flange and the hubs are available from stock.

Features
torsionally flexible jaw coupling as a flange type for heavy engineering
radially mountable without displacing the driving components
particularly short mounting length
flange material: 3b made of GGG40 (nodular iron)
customized mounting flanges on request

ROTEX DF
0 – 35,000 Nm / jaw coupling with flange connection on both sides

The torsionally flexible jaw coupling CHINAMFG DF is an elastomer coupling with flange connection on both sides (flange coupling) and particularly suitable for applications in heavy engineering.

The driving flanges and hubs are available from stock. The flanges are available from stock both with tapped holes and without hole/without centering.

Features
torsionally flexible jaw coupling (flange coupling) with flange connection on both sides for heavy engineering
damping vibrations
axial plug-in
fail-safe
maintenance-free

ROTEX DFN
0 – 35,000 Nm / jaw coupling with flange connection on both sides

The torsionally flexible jaw coupling CHINAMFG DFN is an elastomer coupling with flange connection on both sides (flange coupling) for screwing of driving and driven machine.
This torsionally flexible coupling is particularly suitable for applications in heavy engineering.

The CHINAMFG DFN elastomer coupling with flange connection on both sides can be radially assembled and disassembled without displacing the adjacent power packs. This allows for quick replacement of spiders, too.

The driving flanges and hubs are available from stock.

Features
torsionally flexible jaw coupling (flange coupling) with flange connection on both sides for heavy engineering
for screwing of driving and driven machine
radially mountable without displacing the driving components
quick replacement of spider possible
flange material: 3b made of GGG40 (nodular iron)

ROTEX ZS-DKM-SH
0 – 2,400 Nm / double-cardanic coupling with split hubs

The torsionally flexible jaw coupling ZS-DKM-SH is a double-cardanic elastomer coupling with split hubs (SH SPLIT).

The CHINAMFG ZS-DKM-SH with SPLIT hub provides the advantage that the coupling can be radially assembled and disassembled without displacing the adjacent power packs. The hub resp. connection of the 2 hub halves is not weakened by cracking.

This design is also referred to as drop-our center design coupling, half shell coupling, clamping coupling, coupling with split hubs or elastomer coupling with split clamping hub.

The hubs of the double-cardanic jaw coupling CHINAMFG ZS-DKM-SH are mechanically split by cracking and screwed back together with the assembly. This elastomer coupling is ideally suitable to offset larger radial displacements. Due to the split hubs the coupling can be radially assembled and disassembled without displacing the adjacent power packs.

Features
double-cardanic jaw coupling for large shaft displacements
good damping properties due to double arrangement of spiders
spacers adapted to drop-out center length of standard pumps
for bigger radial displacements generated by thermal expansion
assembly/disassembly via 4 screws

ROTEX ZRS
0 – 520 Nm / torsionally flexible intermediate shaft coupling with SPLIT hubs or half shell hubs

ROTEX ZRS jaw coupling for bridging smaller and bigger shaft distances

The lightweight ZRS made of high-strength aluminium captivates by a very high overall stiffness.
The high stiffness of the aluminium pipe arises from the structure consisting of 2 pipes that are connected via webs – the CHINAMFG cams.

The critical bending speed of the coupling is positively affected; shaft distances up to 4,000 mm can be bridged subject to the very low bending.

In addition the speed referring to the shaft distance dimension can be significantly higher than with the renowned intermediate pipe coupling with steel pipe.

The high stiffness of the pipe allows for torque transmission from the soft 92 ShA spider to the torsionally stiff 64 ShD spider.

Fields of application of the torsionally flexible  ROTEX ZR-S intermediate pipe coupling:
The ZRS intermediate pipe coupling is used wherever large shaft distances must be bridged, e. g. on scissors lifts and conveyor systems in the lower torque range.

The wide range of CHINAMFG hubs can be combined with the ZRS pipe. For example in combination with the split ROTEX-SH-SPLIT hubs they allow for radial assemby and disassembly without displacing driving and driven side.

Please note: This type is not permissible for crane and hoist drives.

Features
double-cardanic jaw coupling with half shells (half shell coupling) and intermediate shaft (cardan shaft)
lightweight made of high-strength aluminium convinces by a very high overall stiffness.
for bridging large shaft distances
good damping properties due to double arrangement of spiders
intermediate pipe radially dismountable with flexible bearing in the GS spider

ROTEX ZR
0 – 1,920 Nm / torsionally flexible half shell coupling with intermediate shaft

Jaw coupling for bridging large shaft distances

The torsionally flexible jaw coupling CHINAMFG ZR is a half shell coupling (coupling with split hub) with intermediate shaft for bridging large shaft distances.

Couplings with split hubs are also referred to as drop-out center design couplings, half-shell couplings, clamping coupling or elastomer couplings with split clamping hubs.

The intermediate shaft coupling CHINAMFG ZR allows for bridging large shaft distances. Its half shell clamping hubs allow for radial assembly/disassembly (drop-out center design coupling). Due to its double-cardanic arrangement the intermediate shaft coupling is able to offset large displacements.

Fields of application of the torsionally flexible half shell coupling CHINAMFG ZR with intermediate shaft:
This intermediate shaft coupling with half shell clamping hubs is used wherever large shaft distances must be bridged, e. g. on scissors lifts and conveyor systems in the lower torque range.

Please note: This type is not permissible for crane and hoist drives!

Features
double-cardanic jaw coupling with half shells (half shell coupling) and intermediate shaft (cardan shaft)
for bridging large shaft distances
good damping properties due to double arrangement of spiders
intermediate pipe radially dismountable with flexible bearing in the GS spider
compensating for large displacements due to double-cardanic design

ROTEX BTAN
0 – 12,500 Nm / torsionally flexible jaw coupling with brake drum

The torsionally flexible jaw coupling CHINAMFG BTAN is an elastomer coupling combined with a brake drum. CHINAMFG type BTAN is used as a holding brake, but also a a service brake.

The CHINAMFG jaw coupling with brake drum (drum brake) to be mounted to external drum brakes with double shoes. The brake drum is positioned on the driven side. For combinations with a brake drum please note the potentially resulting high circumferential speed – KTR recommends dynamic balancing with high-speed drives from 30 m/s.

Fields of application of our torsionally flexible jaw coupling CHINAMFG BTAN with brake drum (drum brake):
This combination of coupling and brake is used wherever holding brakes or service brakes are required, e. g. on conveyor belts, generators, turbine drives, industrial fans, cranes, hoists, etc.
Safety-relevant drives are preferably combined with CHINAMFG hubs made of steel/GJS. Applications with moderate demands can be combined with GJL hubs.

Couplings and brakes by KTR:
The customer benefits from being supplied by 1 single source with the option to develop the brakes (KTR-STOP or EMB-STOP) as well. The KTR-STOP brake is hydraulically actuated and EMB-STOP is electromechanically actuated.

Features
each coupling type can be combined with various sizes of brake drums
following DIN 15431/15435
axial plug-in
damping vibrations
compensating for displacements (axial, radial, angular)

ROTEX SBAN
0 – 12,500 Nm / jaw coupling with brake disk

The CHINAMFG jaw coupling with brake disk for disk for brake calipers. Usually the brake disk is positioned on the driven side having the highest mass moment of inertia. For combinations with brake disks please note the potentially resulting high circumferential speed – KTR recommends dynamic balancing with high-speed drives from 30 m/s.

Fields of application of our torsionally flexible jaw coupling CHINAMFG SBAN with brake disk (disk for brake caliper):
This combination of coupling and brake disk is used wherever holding brakes or service brakes are required, e. g. on conveyor belts, generators, turbine drives, industrial fans, cranes, hoists, etc.
Safety-relevant drives are preferably combined with CHINAMFG hubs made of steel/GJS. Applications with moderate demands can be combined with GJL hubs.

Couplings and brakes by KTR:
The customer benefits from being supplied by 1 single source with the option to develop the brakes (KTR-STOP or EMB-STOP) as well. The KTR-STOP brake is hydraulically actuated and EMB-STOP is electromechanically actuated.

Features
torsionally flexible jaw coupling with disk for brake calipers
Every coupling type can be combined with various sizes of brake disks
The brake disk must be fastened on the shoulder of hub 1Nd
The max. braking torque must not exceed the maximum torque of the coupling
Coupling can be combined with our brake systems

ROTEX AFN-SB special
0 – 35,000 Nm / jaw coupling with brake disk

Jaw coupling with brake disk – radially mountable/dismountable

The torsionally flexible jaw coupling CHINAMFG AFN-SB special is an elastomer coupling with brake disk (brake disk coupling).

Brake disk and spider of the elastomer coupling can be replaced when mounted without displacing driving and driven side.

Features
torsionally flexible coupling with brake disk (brake disk coupling / drop-out center design coupling)
damping vibrations
axial plug-in
compensating for displacements (axial, radial, angular)
maintenance-free

ROTEX SD
0 – 12,500 Nm / shiftable jaw coupling

Coupling shiftable at standstill

The torsionally flexible jaw coupling CHINAMFG SD is an elastomer coupling shiftable at standstill (shiftable coupling).

The shiftable CHINAMFG coupling type SD enables easy disconnection and connection of the driving and driven side with standstill of the plant.

Please note with shiftable coupling CHINAMFG SD:
Shiftable linkage also available with locking pins, lock device and retrieval of shifting position via sensors.

Features
jaw coupling shiftable at standstill / shiftable coupling
easy disconnection resp. connection of driving and driven machines with standstill of the plant
existing shiftable hub can be combined with slip ring and shiftable linkage
pilot bored shifting hubs must be set to the necessary shifting force after final machining
complete shifting device consists of split slip ring made of red brass, shifting fork, shifting shaft, shifting lever, eye-type bearing

Why an elastic coupling of Bestseal?
An elastic coupling from Bestseal is the result of decades of product development and innovation. With this, we assure you of a high-quality component with the highest possible reliability. We see ourselves as the reliable partner of anyone who wants to set things in motion.

More than 2,000 employees work passionately every day to provide you, the customer, with the best conceivable products. DIN ISO certifications are the best proof of this. A transparent and honest way of working lies at the basis of every customer relationship with us.

Would you like to learn more about our elastic couplings or answer an important product question? 
Please contact our technical support department or sales department and let us inform you in detail about the various possibilities. 
We will be happy to think along with you based on your wishes and make you a custom offer without any obligation.

we specialized in the development and production of sealing systems   which were used in the Metallurgical,Electrical,Auto, Engineering machinery, Light industrial machinery and Electrical appliance manufacturing industries. BESEALS focus on customers’ needs,as a dependable partner and reliable supplier to help you resolve supply or technical problems ,and improve the performance of your equipments or your business. When you are facing emergency repairs situation or urgent orders,the highly responsive team of DLseals will offer you very short lead time. Beseals has a global sales network,and our seals have been sold to more than 100 countries or areas ,Such as America, England, Canada, Australia, Russian Federation ect .

FAQ

1. who are we? Are you trading company or manufacturer ?
We are manufacturer.We are based in HangZhou, China, start from 2571,sell to Domestic Market(33.00%),North America(15.00%),South America(10.00%),Western Europe(8.00%),Eastern Europe(6.00%),Souther Europe(6.00%),Southeast Asia(5.00%),Mid East(5.00%),Northern Europe(5.00%),Oceania(2.00%),South Asia(2.00%),Africa(00.00%),Eastern Asia(00.00%),Central America(00.00%). There are total about 51-100 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production; Always final Inspection before shipment;

3.what can you buy from us?
PTFE Seals/Oil Seals/O Rings/Rubber Seals/Plastic Seals/Mechanical Seal/O-RING/ RING Seals.

4. why should you buy from us not from other suppliers?

Beseals is a professional manufacturer of seals .Our company specializes in the production of PU, PTFE, rubber and metal sealing components

5. How long is your delivery time?

Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

6.Do you provide samples ?

is it free or extra ? Yes, we could offer the sample for free charge but you need to pay the cost of freight.

 

7. what services can we provide?

Accepted Delivery Terms: FOB,CFR,CIF,EXW,FAS,CIP,FCA,Express Delivery;

Accepted Payment Currency:USD,EUR,JPY,CAD,HKD,CNY;

Accepted Payment Type: T/T,L/C,D/P D/A,MoneyGram,PayPal,Western Union,Escrow; Language
Spoken:English,Chinese,Japanese

For more information, please contact us. We look CHINAMFG to your arrival

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Can Clamp Couplings Be Used in High-Temperature or Corrosive Environments?

Yes, clamp couplings are designed to be versatile and can be used in a wide range of environments, including high-temperature and corrosive conditions. However, their suitability depends on the specific material and coating used in the construction of the coupling.

In high-temperature environments, clamp couplings made from materials such as stainless steel or high-temperature alloys are commonly used. These materials have excellent heat resistance and can withstand elevated temperatures without losing their structural integrity. It is essential to choose a clamp coupling with a temperature rating that exceeds the operating temperature of the application to ensure safe and reliable performance.

In corrosive environments where exposure to chemicals, moisture, or other corrosive substances is a concern, selecting a corrosion-resistant material is critical. Stainless steel clamp couplings, particularly those made from 316-grade stainless steel, are widely used in such conditions due to their superior corrosion resistance. For more aggressive corrosive environments, special coatings or surface treatments can be applied to further enhance the coupling’s resistance to corrosion.

It is essential to consider the specific requirements of the application when selecting a clamp coupling for use in high-temperature or corrosive environments. Factors such as temperature, humidity, exposure to chemicals, and the presence of abrasive substances should be taken into account. Consulting with coupling manufacturers or industry experts can help in choosing the most suitable clamp coupling for the intended application.

clamp coupling

Differences between Clamp Couplings Made from Different Materials

Clamp couplings can be manufactured from various materials, each offering unique characteristics and suitability for different applications. Here are the main differences between clamp couplings made from aluminum, steel, and plastic:

  • Aluminum Clamp Couplings: Aluminum clamp couplings are lightweight and offer excellent corrosion resistance. They are often used in applications where weight reduction is crucial, such as in aerospace and automotive industries. However, aluminum has lower tensile strength compared to steel, making it less suitable for heavy-duty or high-torque applications.
  • Steel Clamp Couplings: Steel clamp couplings are known for their strength and durability. They can handle higher torque loads and are well-suited for heavy machinery, industrial equipment, and power transmission applications. Steel couplings are available in various grades, and surface treatments can further enhance their corrosion resistance.
  • Plastic Clamp Couplings: Plastic clamp couplings are lightweight and cost-effective. They are commonly used in applications where weight is a concern, and the torque requirements are relatively low. Plastic couplings may offer good chemical resistance and electrical insulation properties, but they may not be as durable as metal couplings and are not suitable for high-load or high-temperature applications.

Considerations: When selecting a clamp coupling material, consider the specific requirements of your application:

  • Load and Torque: Choose a material that can handle the expected load and torque of your application without exceeding the material’s limitations.
  • Environment: Consider the operating environment, including exposure to chemicals, moisture, and temperature fluctuations, to ensure the chosen material can withstand these conditions.
  • Cost and Weight: Balance the cost-effectiveness and weight-saving benefits of materials like aluminum and plastic against the strength and durability of steel.

Ultimately, the material selection for clamp couplings should be based on the specific demands of the application to ensure optimal performance and longevity.

clamp coupling

Different Types of Clamp Couplings

Clamp couplings come in various designs to accommodate different shaft sizes, torque levels, and application requirements. Some common types of clamp couplings available in the market include:

  1. Two-Piece Clamp Couplings: This type of coupling consists of two separate hubs that are connected by a clamp. The clamp is tightened to secure the two hubs onto the shafts, creating a rigid connection. Two-piece clamp couplings are easy to install and suitable for applications with moderate torque and misalignment.
  2. One-Piece Clamp Couplings: As the name suggests, one-piece clamp couplings have a single-piece construction, which simplifies the installation process. They provide a compact and lightweight solution for low to medium torque applications.
  3. Double-Walled Clamp Couplings: These couplings have a unique double-walled design, providing better torque transmission capabilities and torsional rigidity. They are ideal for applications with high torque and precise positioning requirements.
  4. Set Screw Clamp Couplings: Set screw clamp couplings use set screws to secure the coupling onto the shaft. While they are simple and cost-effective, they may not handle high torque and misalignment as effectively as other types.
  5. Wedge Clamp Couplings: Wedge clamp couplings use a wedge-shaped collar to create a tight grip on the shaft. They offer excellent torque transmission and axial holding power, making them suitable for heavy-duty applications.
  6. Keyless Clamp Couplings: Keyless clamp couplings eliminate the need for keyways and key connection. Instead, they use compression to secure the coupling to the shaft, providing high torque capacity and easy installation.
  7. Hydraulic Clamp Couplings: Hydraulic clamp couplings use hydraulic pressure to tighten the clamp, ensuring uniform pressure distribution and secure shaft connections. They are commonly used in high-power and critical applications.
  8. Clamp Couplings with Tapered Bushings: These couplings feature tapered bushings that provide a tight fit on the shaft and enhance torque transmission capabilities. They are suitable for heavy-duty applications and high misalignment conditions.

The selection of the appropriate clamp coupling depends on the specific requirements of the mechanical system, such as torque levels, shaft sizes, misalignment allowances, and operating conditions. Consulting with coupling manufacturers or engineering experts can help in choosing the right type of clamp coupling for a particular application.

China Professional CHINAMFG Flexible Jaw Couplings Standard Taper Clamping Sleeve Ring Hubs Afn Bfn Ah Sh CF Cfn Df Dfn Zs-Dkm-Sh Zrs Zr Btan Sban Afn-Sb Special SD Shaft Coupling  China Professional CHINAMFG Flexible Jaw Couplings Standard Taper Clamping Sleeve Ring Hubs Afn Bfn Ah Sh CF Cfn Df Dfn Zs-Dkm-Sh Zrs Zr Btan Sban Afn-Sb Special SD Shaft Coupling
editor by CX 2024-05-02

China Custom Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling

Product Description

Flexible flex Fluid Chain Jaw flange Gear Rigid Spacer PIN HRC MH NM universal Fenaflex Oldham spline clamp tyre grid hydraulic servo motor shaft Coupling
 

Product Description

The function of Shaft coupling:
1. Shafts for connecting separately manufactured units such as motors and generators.
2. If any axis is misaligned.
3. Provides mechanical flexibility.
4. Absorb the transmission of impact load.
5. Prevent overload

We can provide the following couplings.
 

Rigid coupling Flange coupling Oldham coupling
Sleeve or muff coupling Gear coupling Bellow coupling
Split muff coupling Flexible coupling Fluid coupling
Clamp or split-muff or compression coupling Universal coupling Variable speed coupling
Bushed pin-type coupling Diaphragm coupling Constant speed coupling

Company Profile

We are an industrial company specializing in the production of couplings. It has 3 branches: steel casting, forging, and heat treatment. Main products: cross shaft universal coupling, drum gear coupling, non-metallic elastic element coupling, rigid coupling, etc.
The company mainly produces the industry standard JB3241-91 swap JB5513-91 swc. JB3242-93 swz series universal coupling with spider type. It can also design and produce various non-standard universal couplings, other couplings, and mechanical products for users according to special requirements. Currently, the products are mainly sold to major steel companies at home and abroad, the metallurgical steel rolling industry, and leading engine manufacturers, with an annual production capacity of more than 7000 sets.
The company’s quality policy is “quality for survival, variety for development.” In August 2000, the national quality system certification authority audited that its quality assurance system met the requirements of GB/T19002-1994 IDT ISO9002:1994 and obtained the quality system certification certificate with the registration number 0900B5711. It is the first enterprise in the coupling production industry in HangZhou City that passed the ISO9002 quality and constitution certification.
The company pursues the business purpose of “reliable quality, the supremacy of reputation, commitment to business and customer satisfaction” and welcomes customers at home and abroad to choose our products.
At the same time, the company has established long-term cooperative relations with many enterprises and warmly welcomes friends from all walks of life to visit, investigate and negotiate business!

 

How to use the coupling safely

The coupling is an intermediate connecting part of each motion mechanism, which directly impacts the regular operation of each motion mechanism. Therefore, attention must be paid to:
1. The coupling is not allowed to have more than the specified axis deflection and radial displacement so as not to affect its transmission performance.
2. The bolts of the LINS coupling shall not be loose or damaged.
3. Gear coupling and cross slide coupling shall be lubricated regularly, and lubricating grease shall be added every 2-3 months to avoid severe wear of gear teeth and serious consequences.
4. The tooth width contact length of gear coupling shall not be less than 70%; Its axial displacement shall not be more significant than 5mm
5. The coupling is not allowed to have cracks. If there are cracks, it needs to be replaced (they can be knocked with a small hammer and judged according to the sound).
6. The keys of LINS coupling shall be closely matched and shall not be loosened.
7. The tooth thickness of the gear coupling is worn. When the lifting mechanism exceeds 15% of the original tooth thickness, the operating mechanism exceeds 25%, and the broken tooth is also scrapped.
8. If the elastic ring of the pin coupling and the sealing ring of the gear coupling is damaged or aged, they should be replaced in time.

 

Certifications

 

Packaging & Shipping

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Are There Any Maintenance Requirements for Clamp Couplings to Ensure Their Longevity?

Yes, like any mechanical component, clamp couplings require regular maintenance to ensure their longevity and optimal performance. Proper maintenance can help prevent premature wear, reduce the risk of failure, and extend the service life of the coupling. Here are some essential maintenance practices for clamp couplings:

  • Regular Inspection: Perform visual inspections of the clamp coupling regularly to check for signs of wear, damage, or misalignment. Look for cracks, corrosion, or any deformation in the coupling components.
  • Lubrication: Some clamp couplings may require periodic lubrication to reduce friction between moving parts. Check the manufacturer’s guidelines for the appropriate lubrication schedule and use the recommended lubricant.
  • Bolt Tightening: Ensure that all the bolts and screws securing the clamp coupling are properly tightened according to the manufacturer’s specifications. Loose bolts can lead to misalignment and coupling failure.
  • Alignment: Regularly check the alignment of the connected shafts. Misalignment can cause excessive stress on the coupling and lead to premature wear. If misalignment is detected, it should be corrected promptly.
  • Environmental Protection: If the clamp coupling is used in harsh environments, take measures to protect it from dust, debris, and corrosive substances. Use suitable covers or guards to shield the coupling from external contaminants.
  • Load Monitoring: Be aware of the operating conditions and load requirements of the machinery. Excessive loads or shock loads can impact the performance of the coupling. Avoid exceeding the coupling’s specified torque and speed limits.
  • Regular Replacement: Even with proper maintenance, clamp couplings have a finite service life. It is essential to follow the manufacturer’s recommendations for replacing the coupling at the end of its expected lifespan or if any significant wear or damage is detected.

By following these maintenance practices, operators can ensure that the clamp couplings remain in good condition and continue to function reliably. Regular maintenance not only extends the coupling’s lifespan but also enhances the safety and efficiency of the entire mechanical system. Always refer to the manufacturer’s guidelines and instructions for the specific maintenance requirements of the clamp coupling model used in the application.

clamp coupling

Potential Causes of Failure in Clamp Couplings and Prevention

While clamp couplings are robust and reliable, certain factors can lead to failure if not addressed properly. Here are some potential causes of failure and the corresponding prevention measures:

  1. Insufficient Torque: If the coupling is not tightened to the recommended torque, it may slip or come loose during operation. To prevent this, always follow the manufacturer’s torque specifications and use a torque wrench during installation.
  2. Material Fatigue: Repeated load cycles and excessive vibration can lead to material fatigue and eventual failure. Choosing high-quality materials and performing regular inspections can help detect fatigue and replace the coupling before failure occurs.
  3. Corrosion: In corrosive environments, the coupling’s material may degrade over time, compromising its strength. Using stainless steel or other corrosion-resistant materials can prevent this issue.
  4. Improper Alignment: Misalignment between shafts can put undue stress on the coupling, leading to premature failure. Properly align the shafts during installation to avoid this problem.
  5. Overloading: Exceeding the maximum torque or speed limits specified by the manufacturer can cause the coupling to fail. Stay within the recommended operating parameters to prevent overloading.
  6. Temperature Extremes: Extreme temperatures can affect the material properties and cause the coupling to become brittle or lose its integrity. Select a coupling rated for the operating temperature range of the application.
  7. Poor Maintenance: Neglecting regular maintenance can lead to undetected wear, damage, or contamination, which may ultimately result in failure. Implement a proactive maintenance schedule and inspect the coupling regularly.
  8. Foreign Object Debris (FOD): Foreign particles or debris caught between the coupling components can lead to uneven loads and wear. Keep the coupling and its surroundings clean to avoid FOD-related issues.
  9. Improper Installation: Incorrectly installing the coupling, such as using incorrect fasteners or not following the manufacturer’s guidelines, can compromise its performance and durability. Always refer to the installation instructions and seek professional help if needed.
  10. Environmental Factors: Consider the specific environmental conditions of the application, such as humidity, chemicals, or abrasive substances, and select a coupling that can withstand these conditions.

By understanding and addressing these potential causes of failure, users can ensure the longevity and reliable performance of clamp couplings in their mechanical systems.

clamp coupling

Handling Misalignment with Clamp Couplings

Yes, clamp couplings are designed to handle certain degrees of misalignment between shafts effectively. They can accommodate both angular and parallel misalignments, making them versatile for various mechanical systems.

The design of clamp couplings allows for a certain degree of flexibility and forgiveness in the coupling’s connection. When the shafts are not perfectly aligned due to angular or parallel misalignment, the clamp coupling can compensate for these variations.

The main factors contributing to the clamp coupling’s ability to handle misalignment are:

  • Flexible Material: Clamp couplings are often made of materials like aluminum, stainless steel, or other alloys with some elasticity. This flexibility enables them to absorb and compensate for minor misalignments.
  • Split Design: Clamp couplings usually have a split design with one or more screws or bolts that can be tightened to secure the coupling around the shafts. This design allows for easy installation and adjustment, making it possible to accommodate slight misalignments during assembly.
  • Tightening Mechanism: The screws or bolts used to fasten the clamp coupling can be tightened to the appropriate torque, providing a secure connection while still allowing for a certain amount of movement to handle misalignment.

However, it’s important to note that clamp couplings have limitations when it comes to misalignment. Excessive misalignment can lead to increased wear on the coupling components and shafts, reducing the coupling’s lifespan and potentially causing failure. Therefore, it’s essential to ensure that the misalignment does not exceed the coupling’s specified limits.

For more significant misalignments or applications with constant large misalignments, flexible couplings like elastomeric couplings or gear couplings may be more suitable. It’s crucial to select the appropriate coupling type based on the specific misalignment requirements of the mechanical system.

In conclusion, while clamp couplings can handle certain degrees of misalignment effectively, it is essential to stay within the recommended misalignment limits to maintain the coupling’s performance and longevity.

China Custom Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling  China Custom Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling
editor by CX 2024-04-29

China manufacturer Quick Release Flexible PU Rubber Spider Jaw Shaft Driving L Coupling L035 with Clamp and Keyway for Motor Coupling

Product Description

Product Description

Features:

1. The main body is made of high-strength aluminum alloy

2. Zero rotation interval, suitable for positive and negative rotation

3. The gel is made of polyurethane and has good wear resistance

4. Oil resistance and electrical insulation, intermediate elastomer can absorb vibration

5. Radial, angular and axial deviation compensation

6. Dismountable design for easy installation

7. Clamping screw fastening method

 

Techncial Date

Size Type Standard bore Bore metric Bore inch Dimensions Torgue needed  Rotational speed  Mass
Min Max Min Max A B C D E Nm rpm kg
L035 1 3 3 8 1/8″ 3/8″ 16 20.2 7.8 6.6 0.5 30./8822 0571 -57152031              Fax: 86~/8822 0571 -57152030

 
Http://kasinchain      

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

What Industries Commonly Use Clamp Couplings and Why?

Clamp couplings are widely used in various industries due to their versatility, ease of installation, and ability to accommodate different shaft sizes and misalignments. Some of the industries where clamp couplings are commonly used include:

  1. Manufacturing: In manufacturing industries, clamp couplings are commonly employed in conveyor systems, machine tools, and material handling equipment. They provide a reliable and flexible connection between shafts, allowing for smooth power transmission and easy maintenance.
  2. Agriculture: Farm machinery and equipment often use clamp couplings to connect power take-off shafts, ensuring efficient power transfer from the tractor to various implements like mowers, balers, and harvesters.
  3. Food and Beverage: The food and beverage industry requires couplings that are easy to clean and maintain. Stainless steel clamp couplings are commonly used in food processing equipment due to their corrosion resistance and hygienic design.
  4. Packaging: Packaging machinery often uses clamp couplings to connect rotating components, such as rollers and conveyors, ensuring precise and synchronized movement during the packaging process.
  5. Oil and Gas: In the oil and gas industry, clamp couplings are used in various applications, including pumps, compressors, and drilling equipment. Stainless steel clamp couplings are favored in offshore and corrosive environments.
  6. Automotive: In automotive manufacturing, clamp couplings find applications in power transmission systems, steering columns, and drivetrain components.
  7. Marine: The marine industry often employs clamp couplings in propulsion systems and auxiliary machinery, especially when corrosion resistance and reliability are critical.
  8. Pharmaceutical: Pharmaceutical manufacturing equipment requires couplings that meet stringent hygiene standards. Stainless steel clamp couplings are suitable for pharmaceutical applications due to their cleanability and resistance to contamination.
  9. Mining: Mining machinery relies on robust and reliable couplings to withstand heavy loads and harsh operating conditions. Clamp couplings are commonly used in conveyors, crushers, and other mining equipment.

The widespread use of clamp couplings across industries can be attributed to their ability to provide a secure and backlash-free connection between shafts, accommodate misalignment, and handle varying torque and speed requirements. Additionally, their simple design and ease of maintenance make them a popular choice in numerous industrial applications.

clamp coupling

Impact of Clamp Coupling Design on Performance in Heavy-Duty Applications

The design of a clamp coupling plays a crucial role in determining its performance, especially in heavy-duty applications. Here are some key design factors and their impact:

  • Material Selection: The choice of material affects the strength, durability, and resistance to wear and corrosion. In heavy-duty applications, steel clamp couplings are often preferred due to their high tensile strength and ability to withstand heavy loads and torque.
  • Torsional Rigidity: Heavy-duty applications often involve transmitting high levels of torque. A clamp coupling with higher torsional rigidity will maintain the connection between shafts more effectively, minimizing backlash and ensuring accurate power transmission.
  • Hub Design: The hub of the clamp coupling should have a robust and precise design to provide a secure grip on the shafts. In heavy-duty applications, keyless and multiple screw designs are commonly used to distribute clamping forces evenly and prevent slippage.
  • Number of Screws: The number of screws used to secure the clamp coupling to the shafts can impact its holding power. More screws distributed around the circumference can provide better balance and prevent distortion under heavy loads.
  • Clamping Force: The clamping force applied by the coupling affects the torque transmission capabilities. In heavy-duty applications, it is crucial to ensure that the clamping force is sufficient to prevent slippage between the coupling and the shafts.
  • Surface Treatment: The surface of the clamp coupling can be treated to enhance its resistance to corrosion, wear, and fatigue. Surface treatments like coating or plating can significantly improve the coupling’s performance and longevity in challenging environments.
  • Alignment: Proper alignment during installation is vital to prevent premature wear and excessive stress on the coupling. In heavy-duty applications, precision alignment using alignment tools or laser systems is recommended to maintain optimal performance and prevent premature failure.

Conclusion: In heavy-duty applications, selecting a clamp coupling with the right material, torsional rigidity, hub design, number of screws, and clamping force is critical to ensuring reliable and efficient power transmission. Proper installation, regular maintenance, and adherence to manufacturer’s guidelines will further enhance the performance and longevity of the clamp coupling in heavy-duty applications.

clamp coupling

Can Clamp Couplings Accommodate Different Shaft Sizes and Materials?

Yes, clamp couplings are designed to accommodate different shaft sizes and materials, making them versatile for various mechanical applications. The flexibility in shaft size compatibility is one of the key advantages of using clamp couplings.

Clamp couplings typically come in a range of sizes, allowing them to fit various shaft diameters. The clamp design allows for easy adjustment and tightening around the shaft, creating a secure connection. This adjustability makes clamp couplings suitable for connecting shafts of different sizes without the need for precise machining or customizations.

Moreover, clamp couplings can handle different materials used for shafts, including steel, stainless steel, aluminum, and even non-metallic materials like plastics. As long as the shaft material is strong enough to handle the intended torque and load requirements, a clamp coupling can effectively connect the shafts.

When selecting a clamp coupling, it is essential to consider the specific application requirements, including torque, speed, misalignment, and environmental conditions. Properly matching the coupling size and material to the shafts’ specifications ensures a reliable and efficient connection, reducing the risk of premature wear or failure.

China manufacturer Quick Release Flexible PU Rubber Spider Jaw Shaft Driving L Coupling L035 with Clamp and Keyway for Motor Coupling  China manufacturer Quick Release Flexible PU Rubber Spider Jaw Shaft Driving L Coupling L035 with Clamp and Keyway for Motor Coupling
editor by CX 2024-04-26

China Good quality Quick Release Flexible PU Rubber Spider Jaw Shaft Driving L Coupling L035 with Clamp and Keyway for Motor Coupling

Product Description

Product Description

Features:

1. The main body is made of high-strength aluminum alloy

2. Zero rotation interval, suitable for positive and negative rotation

3. The gel is made of polyurethane and has good wear resistance

4. Oil resistance and electrical insulation, intermediate elastomer can absorb vibration

5. Radial, angular and axial deviation compensation

6. Dismountable design for easy installation

7. Clamping screw fastening method

 

Techncial Date

Size Type Standard bore Bore metric Bore inch Dimensions Torgue needed  Rotational speed  Mass
Min Max Min Max A B C D E Nm rpm kg
L035 1 3 3 8 1/8″ 3/8″ 16 20.2 7.8 6.6 0.5 30./8822 0571 -57152031              Fax: 86~/8822 0571 -57152030

 
Http://kasinchain      

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Are There Any Safety Considerations When Using Clamp Couplings in Specific Applications?

While clamp couplings are generally considered safe and reliable, there are specific safety considerations to keep in mind when using them in various applications:

  1. Proper Installation: Ensuring the clamp coupling is installed correctly is crucial for its safe operation. Follow the manufacturer’s guidelines and torque specifications during installation to prevent coupling failure.
  2. Maintenance: Regular maintenance is essential to identify wear, corrosion, or damage that could compromise the coupling’s integrity. Replace worn or damaged parts promptly to prevent unexpected failures.
  3. Temperature and Environment: Consider the operating temperature and environmental conditions of the application. In high-temperature or corrosive environments, choose materials like stainless steel that can withstand such conditions without compromising safety.
  4. Alignment: Misalignment between shafts can lead to premature wear and coupling failure. Ensure the shafts are properly aligned to prevent excessive stress on the coupling.
  5. Overloading: Avoid exceeding the torque and speed limits specified by the manufacturer. Overloading the coupling can lead to premature failure and safety hazards.
  6. Dynamic Balancing: In rotating machinery, ensure that components are dynamically balanced to reduce vibrations that could affect the coupling’s performance and cause fatigue failure.
  7. Periodic Inspection: Regularly inspect the clamp coupling and surrounding components for signs of wear, fatigue, or damage. Address any issues promptly to prevent unexpected failures.
  8. Application-Specific Considerations: Consider the specific requirements of the application. For example, in food processing, choose couplings that meet hygienic standards, while in explosive environments, consider couplings with anti-spark features.
  9. Training and Awareness: Ensure that personnel working with clamp couplings are adequately trained and aware of safety guidelines to handle the equipment properly.

By adhering to these safety considerations and taking appropriate precautions, clamp couplings can be used safely and effectively in various applications, contributing to the reliability and efficiency of mechanical systems.

clamp coupling

Clamp Couplings and Damping Vibrations/Noise

Yes, clamp couplings can help dampen vibrations and reduce noise in mechanical systems to some extent. While not specifically designed as vibration isolators, clamp couplings can mitigate vibrations and noise due to their unique design and material properties.

The design of clamp couplings involves a split hub with screws that securely fasten around the shafts. This design offers several benefits:

  1. Damping Effect: The material of the coupling can absorb and dampen some of the vibrations generated by rotating equipment. Elastomeric elements or flexible materials used in some clamp couplings can help attenuate vibrations.
  2. Reduction of Resonance: Vibrations in rotating machinery can sometimes lead to resonance, causing excessive oscillations. Clamp couplings can help break the resonance cycle and prevent amplification of vibrations.
  3. Torsional Compliance: Some clamp couplings exhibit a degree of torsional compliance, which means they can tolerate small angular misalignments and dampen torsional vibrations.
  4. Transmissible Torque Variation: In some cases, clamp couplings can absorb torque spikes or variations, reducing the impact of sudden changes in load.

While clamp couplings can provide some level of vibration and noise reduction, their primary function is to transmit torque and accommodate misalignment between shafts. For more demanding vibration isolation or noise reduction applications, specialized components such as flexible couplings with damping features or dedicated vibration isolation mounts may be more suitable.

It is essential to consider the specific requirements of the mechanical system and consult with experts to determine the most appropriate coupling or isolator for achieving the desired level of vibration and noise reduction.

clamp coupling

Industry Standards and Certifications for Clamp Couplings

There are several industry standards and certifications that may apply to clamp couplings, depending on their design, materials, and intended applications. These standards ensure that the clamp couplings meet specific requirements and quality benchmarks, providing confidence in their performance and reliability.

Some of the commonly recognized standards and certifications for clamp couplings include:

  • ISO 9001: This is a quality management system standard that sets requirements for the design, development, production, and service of products. Manufacturers of clamp couplings may obtain ISO 9001 certification to demonstrate their commitment to quality and continuous improvement.
  • ASME B29.1: This standard is specific to roller chain drives and includes guidelines for chain coupling dimensions and interchangeability.
  • AGMA 9002-C16: This standard, developed by the American Gear Manufacturers Association, provides guidelines for inspection practices of flexible couplings, which may include clamp couplings.
  • API 671: This standard is specific to couplings used in petroleum, chemical, and gas industry services. It sets requirements for special-purpose couplings, such as those used in compressors and pumps.
  • DNV GL Type Approval: The Det Norske Veritas Germanischer Lloyd (DNV GL) provides type approval certification for couplings used in maritime and offshore applications. This certification ensures that the coupling meets specific quality and safety standards for marine use.
  • ATEX: For couplings used in explosive atmospheres, the ATEX directive sets requirements to prevent ignition sources and ensure safety. ATEX compliance may be necessary in certain industrial settings.

It’s important to note that not all clamp couplings require certification under these standards, as the applicability depends on the specific industry and use case. Additionally, some manufacturers may adhere to their own internal quality control measures without seeking external certifications.

When selecting clamp couplings for particular applications, it’s essential to consider whether specific industry standards or certifications are necessary. Consulting with suppliers or coupling manufacturers can help ensure that the chosen clamp couplings meet the required quality and safety standards for their intended use.

China Good quality Quick Release Flexible PU Rubber Spider Jaw Shaft Driving L Coupling L035 with Clamp and Keyway for Motor Coupling  China Good quality Quick Release Flexible PU Rubber Spider Jaw Shaft Driving L Coupling L035 with Clamp and Keyway for Motor Coupling
editor by CX 2024-04-19

China Hot selling Spacer Flexible Clamp Type Jaw Coupling

Product Description

Spacer flexible clamp type Jaw coupling

1. Material: Medium Carbon Steel
2. ANSI standard
3. Protective cover and O-rings included
4. High flexibility and power transmission capacity
5. Good stability
6. Easy to maintain

The chain coupling, composed of two-strand roller chains and 2 sprockets, features simple and compact structure, and high flexibility, power transmission capability and durability. What’s more, the chain coupling allows simple connection/disconnection, and the use of the housing enhances safety and durability.

PACKAGE
1.Polybag+Box+Case
2.According to customers’demand.

Choose TAI

1. TAI with sophisticated CNC equipment, advanced technology and perfect inspection equipment produce all kinds of chains, sprockets and other transmission equipments which can make the customers’ trust. The company since its establishment has passed ISO9001 and other certifications. “High quality, high benefit, high standards” to sing more integrated into the world. Adhering to the “good faith service to customers” purposes, from being in order to after-sales service, each bit closely link, TAI will provide the most intimate, comprehensive service.

2. “Meet the customers’ requirement, until customers’ satisfaction” is our goal from start to finish, better innovation and better cooperation can create better TAI to service the world. Let us work together, to create a better future with each other.

 

SPECIFICATION
TYRE    COUPLING 
F    40  H 
F    70  S   TYRES
F    90  S   TYRES
F    100F   
F    100H
F    100S   TYRES
F    110S   TYRES
F    120S   TYRES
F    140F
F    140H
F    140S    TYRES
F    160H
F    160S    TYRES
F    180F
F    180H
F    180S    TYRES
CONE     RING    COUPLINGS
M10      NUT& BOLT  SETS
M10      RUBBERS
M12      RUBBERS
M20      RUBBERS
M20      NUT&BOLT  SETS

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

What are the Torque and Speed Limits of Clamp Couplings in Various Applications?

The torque and speed limits of clamp couplings vary depending on their design, material, and application. Generally, clamp couplings are suitable for a wide range of torque and speed requirements in various mechanical systems. Here are some considerations:

Torque Limits:

Clamp couplings can handle a broad range of torque values, making them suitable for low, medium, and high torque applications. The torque capacity is influenced by factors such as the material and size of the coupling, as well as the clamping force applied to the shaft.

It is crucial to select a clamp coupling that can handle the maximum torque generated in the system during operation. Oversizing the coupling ensures it can safely transmit the required torque without reaching its limits, reducing the risk of premature failure.

Speed Limits:

Similar to torque limits, the speed limits of clamp couplings are influenced by their design and material. In high-speed applications, factors like centrifugal forces and resonance become significant considerations.

Clamp couplings made from high-strength materials like stainless steel or alloy steel can handle higher speeds with minimal risk of deformation or failure. Additionally, precision machining and balancing of the coupling help reduce vibration and maintain stability at elevated speeds.

Application-Specific Considerations:

When using clamp couplings in specific applications, factors like shock loads, reversing loads, and misalignment should be accounted for. These dynamic forces can impact the overall performance and durability of the coupling.

It is essential to consult the manufacturer’s specifications and guidelines for torque and speed ratings. Additionally, engineering calculations and simulations can help determine the most suitable clamp coupling for a particular application.

Professional Advice:

If you are unsure about the torque and speed limits of clamp couplings for your specific application, it is advisable to seek professional advice from coupling manufacturers or engineering experts. They can provide valuable insights and recommend the most appropriate coupling for your requirements, ensuring reliable and efficient power transmission in your mechanical system.

clamp coupling

Impact of Clamp Coupling Design on Performance in Heavy-Duty Applications

The design of a clamp coupling plays a crucial role in determining its performance, especially in heavy-duty applications. Here are some key design factors and their impact:

  • Material Selection: The choice of material affects the strength, durability, and resistance to wear and corrosion. In heavy-duty applications, steel clamp couplings are often preferred due to their high tensile strength and ability to withstand heavy loads and torque.
  • Torsional Rigidity: Heavy-duty applications often involve transmitting high levels of torque. A clamp coupling with higher torsional rigidity will maintain the connection between shafts more effectively, minimizing backlash and ensuring accurate power transmission.
  • Hub Design: The hub of the clamp coupling should have a robust and precise design to provide a secure grip on the shafts. In heavy-duty applications, keyless and multiple screw designs are commonly used to distribute clamping forces evenly and prevent slippage.
  • Number of Screws: The number of screws used to secure the clamp coupling to the shafts can impact its holding power. More screws distributed around the circumference can provide better balance and prevent distortion under heavy loads.
  • Clamping Force: The clamping force applied by the coupling affects the torque transmission capabilities. In heavy-duty applications, it is crucial to ensure that the clamping force is sufficient to prevent slippage between the coupling and the shafts.
  • Surface Treatment: The surface of the clamp coupling can be treated to enhance its resistance to corrosion, wear, and fatigue. Surface treatments like coating or plating can significantly improve the coupling’s performance and longevity in challenging environments.
  • Alignment: Proper alignment during installation is vital to prevent premature wear and excessive stress on the coupling. In heavy-duty applications, precision alignment using alignment tools or laser systems is recommended to maintain optimal performance and prevent premature failure.

Conclusion: In heavy-duty applications, selecting a clamp coupling with the right material, torsional rigidity, hub design, number of screws, and clamping force is critical to ensuring reliable and efficient power transmission. Proper installation, regular maintenance, and adherence to manufacturer’s guidelines will further enhance the performance and longevity of the clamp coupling in heavy-duty applications.

clamp coupling

What is a Clamp Coupling and How Does it Work?

A clamp coupling is a type of mechanical coupling used to connect two shafts together to transmit torque and rotational motion between them. It is a simple and effective way of joining shafts in various mechanical systems. The main components of a clamp coupling typically include two hubs and a center section.

Working Principle:

The clamp coupling works on the principle of frictional force and mechanical interference fit. Here’s how it functions:

  1. Hub Assembly: Each end of the shaft has a hub, which is a cylindrical component with a bored hole that matches the shaft diameter. The hubs may have keyways or splines to provide additional torque transmission.
  2. Center Section: The center section of the coupling sits between the two hubs. It is often a split cylindrical sleeve with threaded holes on its outer surface.
  3. Clamping: To assemble the clamp coupling, the two hubs are placed on the respective shafts, and the center section is inserted between them. Then, bolts are inserted through the holes in the hubs and screwed into the threaded holes of the center section. As the bolts are tightened, the center section is drawn inward, creating a compressive force on the shafts and the hubs, thus firmly holding them together.
  4. Frictional Connection: The clamping force between the center section and the shafts creates a frictional connection. This frictional force allows the coupling to transmit torque and rotational motion from one shaft to the other.

Advantages:

Clamp couplings offer several advantages:

  • Easy and quick installation, requiring minimal tools and no special skills.
  • Simple design and cost-effective manufacturing.
  • High torque transmission capacity, making them suitable for various industrial applications.
  • Zero backlash, ensuring accurate and precise motion transfer.
  • Can accommodate different shaft sizes and materials, providing flexibility in design.

Applications:

Clamp couplings find application in a wide range of industries and mechanical systems, including:

  • Power transmission in industrial machinery and equipment.
  • Robotics and automation systems.
  • Printing and packaging machines.
  • Material handling equipment.
  • Pumps and compressors.
  • Conveyor systems.

Overall, clamp couplings are a reliable and versatile solution for connecting rotating shafts and transferring power in various mechanical setups.

China Hot selling Spacer Flexible Clamp Type Jaw Coupling  China Hot selling Spacer Flexible Clamp Type Jaw Coupling
editor by CX 2024-04-19

China Best Sales CNC Machining Clamping Type Flexible Disc Coupling Jaw Oldham for Metallurgy/Mining/Power/Pump

Product Description

OEM Precision CNC Machining Clamping Type Flexible Disc Coupling Jaw Coupling Oldham Coupling for Metallurgy/Mining/Power/Pump

Product Description

Coupling refers to a device that connects 2 shafts or shafts and rotating parts, rotates together during the transmission of motion and power, and does not disengage under normal conditions. Sometimes it is also used
as a safety device to prevent the connected parts from bearing excessive load, which plays the role of overload protection.

Couplings can be divided into rigid couplings and flexible couplings. Rigid couplings do not have buffering property and the ability to compensate the relative displacement of 2 axes. It is required that the 2 axes be strictly aligned. However, such couplings are simple in structure, low in manufacturing cost, convenient in assembly and disassembly, and maintenance, which can ensure that the 2 axes are relatively neutral, have large transmission torque, and are widely used. Commonly used are flange coupling, sleeve coupling and jacket coupling.
 

Materials Aluminum, copper, brass, stainless steel, steel, iron, alloy, zinc etc.
Other Special Materials:Lucite/Nylon/wood/titanium/etc
Surface Treatment Anodizing,Brushing,Galvanized,laser engraving, Silk printing,polishing,Powder coating,etc
Tolerance +/-0.01mm, 100% QC quality inspection before delivery, can provide quality inspection form
Testing equipment CMM;Tool microscope;multi-joint arm;Automatic height gauge;Manual height gauge;Dial gauge;Marble platform;Roughness measurement
Processing Broaching, DRILLING, Etching / Chemical Machining, Laser Machining, Milling, Other Machining Services, Turning, Wire EDM, Rapid
Prototyping
File Formats Solid Works,Pro/Engineer, AutoCAD(DXF,DWG), PDF,TIF etc.
Service Project To provide production design, production and technical service, mould development and processing, etc

Flexible coupling can also be divided into flexible coupling without elastic element and flexible coupling with elastic element. The former type only has the ability to compensate the relative displacement of 2 axes, but cannot cushion and reduce vibration. Common types include slider coupling, gear coupling, universal coupling and chain coupling; The latter type contains elastic elements. In addition to the ability to compensate the relative displacement of 2 axes, it also has the functions of buffering and vibration reduction. 

Our leading mainly including universal couplings, drum gear couplings, elastic couplings etc.
Main production equipments:
Large lathe, surface grinder, milling machine, spline milling machine, horizontal broaching machine, gear hobbing machine, shaper, slotting machine, bench drilling machine, radial drilling machine, boring machine, band sawing machine, horizontal lathe, end milling machine, crankshaft grinder, CNC milling machine, etc.

Coupling performance
1) Mobility. The movability of the coupling refers to the ability to compensate the relative displacement of 2 rotating components. Factors such as manufacturing and installation errors between connected components, temperature changes during operation and deformation under load all put CHINAMFG requirements for mobility. The movable performance compensates or alleviates the additional load between shafts, bearings, couplings and other components caused by the relative displacement between rotating components.
(2) Buffering. For the occasions where the load is often started or the working load changes, the coupling shall be equipped with elastic elements that play the role of cushioning and vibration reduction to protect the prime mover and the working machine from little or no damage.
(3) Safe, reliable, with sufficient strength and service life.
(4) Simple structure, easy to assemble, disassemble and maintain.

Inspection equipment:
Dynamic balance tester, high-speed intelligent carbon and sulfur analyzer, Blochon optical hardness tester, Leeb hardness tester, magnetic yoke flaw detector etc.
  
It is widely used in metallurgical steel rolling, wind power, hydropower, mining, engineering machinery, petrochemical, lifting, paper making, rubber, rail transit, shipbuilding and marine engineering and other industries.

How to select the appropriate coupling type
The following items should be considered when selecting the coupling type.
1. The size and nature of the required transmission torque, the requirements for buffering and damping functions, and whether resonance may occur.
2. The relative displacement of the axes of the 2 shafts is caused by manufacturing and assembly errors, shaft load and thermal expansion deformation, and relative movement between components.
3. Permissible overall dimensions and installation methods, and necessary operating space for assembly, adjustment and maintenance. For large couplings, they should be able to be disassembled without axial movement of the shaft.
In addition, the working environment, service life, lubrication, sealing, economy and other conditions should also be considered, and a suitable coupling type should be selected by referring to the characteristics of various couplings.
If you cannot determine the type, you can contact our professional engineer.
            

FAQ

Q: What is the payment method?
A: We accept TT (Bank Transfer), Western Union, L/C.
 1. For total amount under US$500, 100% in advance.
 2. For total amount above US$500, 30% in advance, the rest before shipment.
Q: What is your MOQ?
A: MOQ depends on our client’s needs, besides,we welcome trial order before mass-production.
Q: What is the production cycle?
A: It varies a lot depending on product dimension,technical requirements and quantity. We always 
try to meet customers’ requirement by adjusting our workshop schedule.
Q: What kind of payment terms do you accept?
A: T/T, western union,  etc.
 
Q: Is it possible to know how is my product going on without visiting your company?
 A: We will offer a detailed products schedule and send weekly reports with digital pictures and 
videos which show the machining progress.
Q: If you make poor quality goods,will you refund our fund?
 A: We make products according to drawings or samples strictly until them reach your 100% satisfaction.
And actually we wont take a chance to do poor quality products.We are proud of keeping the spirit of good quality.

               If there’s anything we can help, please feel free to contact with us.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Are There Any Safety Considerations When Using Clamp Couplings in Specific Applications?

While clamp couplings are generally considered safe and reliable, there are specific safety considerations to keep in mind when using them in various applications:

  1. Proper Installation: Ensuring the clamp coupling is installed correctly is crucial for its safe operation. Follow the manufacturer’s guidelines and torque specifications during installation to prevent coupling failure.
  2. Maintenance: Regular maintenance is essential to identify wear, corrosion, or damage that could compromise the coupling’s integrity. Replace worn or damaged parts promptly to prevent unexpected failures.
  3. Temperature and Environment: Consider the operating temperature and environmental conditions of the application. In high-temperature or corrosive environments, choose materials like stainless steel that can withstand such conditions without compromising safety.
  4. Alignment: Misalignment between shafts can lead to premature wear and coupling failure. Ensure the shafts are properly aligned to prevent excessive stress on the coupling.
  5. Overloading: Avoid exceeding the torque and speed limits specified by the manufacturer. Overloading the coupling can lead to premature failure and safety hazards.
  6. Dynamic Balancing: In rotating machinery, ensure that components are dynamically balanced to reduce vibrations that could affect the coupling’s performance and cause fatigue failure.
  7. Periodic Inspection: Regularly inspect the clamp coupling and surrounding components for signs of wear, fatigue, or damage. Address any issues promptly to prevent unexpected failures.
  8. Application-Specific Considerations: Consider the specific requirements of the application. For example, in food processing, choose couplings that meet hygienic standards, while in explosive environments, consider couplings with anti-spark features.
  9. Training and Awareness: Ensure that personnel working with clamp couplings are adequately trained and aware of safety guidelines to handle the equipment properly.

By adhering to these safety considerations and taking appropriate precautions, clamp couplings can be used safely and effectively in various applications, contributing to the reliability and efficiency of mechanical systems.

clamp coupling

Impact of Clamp Coupling Design on Performance in Heavy-Duty Applications

The design of a clamp coupling plays a crucial role in determining its performance, especially in heavy-duty applications. Here are some key design factors and their impact:

  • Material Selection: The choice of material affects the strength, durability, and resistance to wear and corrosion. In heavy-duty applications, steel clamp couplings are often preferred due to their high tensile strength and ability to withstand heavy loads and torque.
  • Torsional Rigidity: Heavy-duty applications often involve transmitting high levels of torque. A clamp coupling with higher torsional rigidity will maintain the connection between shafts more effectively, minimizing backlash and ensuring accurate power transmission.
  • Hub Design: The hub of the clamp coupling should have a robust and precise design to provide a secure grip on the shafts. In heavy-duty applications, keyless and multiple screw designs are commonly used to distribute clamping forces evenly and prevent slippage.
  • Number of Screws: The number of screws used to secure the clamp coupling to the shafts can impact its holding power. More screws distributed around the circumference can provide better balance and prevent distortion under heavy loads.
  • Clamping Force: The clamping force applied by the coupling affects the torque transmission capabilities. In heavy-duty applications, it is crucial to ensure that the clamping force is sufficient to prevent slippage between the coupling and the shafts.
  • Surface Treatment: The surface of the clamp coupling can be treated to enhance its resistance to corrosion, wear, and fatigue. Surface treatments like coating or plating can significantly improve the coupling’s performance and longevity in challenging environments.
  • Alignment: Proper alignment during installation is vital to prevent premature wear and excessive stress on the coupling. In heavy-duty applications, precision alignment using alignment tools or laser systems is recommended to maintain optimal performance and prevent premature failure.

Conclusion: In heavy-duty applications, selecting a clamp coupling with the right material, torsional rigidity, hub design, number of screws, and clamping force is critical to ensuring reliable and efficient power transmission. Proper installation, regular maintenance, and adherence to manufacturer’s guidelines will further enhance the performance and longevity of the clamp coupling in heavy-duty applications.

clamp coupling

Different Types of Clamp Couplings

Clamp couplings come in various designs to accommodate different shaft sizes, torque levels, and application requirements. Some common types of clamp couplings available in the market include:

  1. Two-Piece Clamp Couplings: This type of coupling consists of two separate hubs that are connected by a clamp. The clamp is tightened to secure the two hubs onto the shafts, creating a rigid connection. Two-piece clamp couplings are easy to install and suitable for applications with moderate torque and misalignment.
  2. One-Piece Clamp Couplings: As the name suggests, one-piece clamp couplings have a single-piece construction, which simplifies the installation process. They provide a compact and lightweight solution for low to medium torque applications.
  3. Double-Walled Clamp Couplings: These couplings have a unique double-walled design, providing better torque transmission capabilities and torsional rigidity. They are ideal for applications with high torque and precise positioning requirements.
  4. Set Screw Clamp Couplings: Set screw clamp couplings use set screws to secure the coupling onto the shaft. While they are simple and cost-effective, they may not handle high torque and misalignment as effectively as other types.
  5. Wedge Clamp Couplings: Wedge clamp couplings use a wedge-shaped collar to create a tight grip on the shaft. They offer excellent torque transmission and axial holding power, making them suitable for heavy-duty applications.
  6. Keyless Clamp Couplings: Keyless clamp couplings eliminate the need for keyways and key connection. Instead, they use compression to secure the coupling to the shaft, providing high torque capacity and easy installation.
  7. Hydraulic Clamp Couplings: Hydraulic clamp couplings use hydraulic pressure to tighten the clamp, ensuring uniform pressure distribution and secure shaft connections. They are commonly used in high-power and critical applications.
  8. Clamp Couplings with Tapered Bushings: These couplings feature tapered bushings that provide a tight fit on the shaft and enhance torque transmission capabilities. They are suitable for heavy-duty applications and high misalignment conditions.

The selection of the appropriate clamp coupling depends on the specific requirements of the mechanical system, such as torque levels, shaft sizes, misalignment allowances, and operating conditions. Consulting with coupling manufacturers or engineering experts can help in choosing the right type of clamp coupling for a particular application.

China Best Sales CNC Machining Clamping Type Flexible Disc Coupling Jaw Oldham for Metallurgy/Mining/Power/Pump  China Best Sales CNC Machining Clamping Type Flexible Disc Coupling Jaw Oldham for Metallurgy/Mining/Power/Pump
editor by CX 2024-04-13