China Custom Concrete Spare Parts Forged Snap Bolt Clamp Coupling for Concrete Pump Pipeline

Product Description

Concrete Pump Pipe Clamp

 

Product Description
 
1. Precision die forging technology manufacturing, high strength, light weight.
2. Special heat treatment process with comprehensive performance

Description

Name Description
Bolt Clamp 2″Forging And Casting
Bolt Clamp 3″Forging And Casting
Bolt Clamp 4″Forging And Casting
Bolt Clamp 5″Forging And Casting
Bolt Clamp 6″Forging And Casting
Bolt Clamp With Bracket 5″Forging And Casting
Twin Bolt Clamp 5″Forging And Casting
Snap Clamp 2″Forging And Casting
Snap Clamp 3″Forging And Casting
Snap Clamp 4″Forging And Casting
Snap Clamp 4.5″Forging And Casting
Snap Clamp 5″Forging And Casting
Snap Clamp 6″Forging And Casting

We, Xihu (West Lake) Dis.ng group can provide full set of concrete pump spare parts: wear plate and cutting ring, s pipe, s valve assy, delivery cylinder, delivery piston, delivery pipe, elbow, taper bend, clamp coupling, rubber hose, filter element, seal kits, gear pump, water pump, remote control, hydraulic pumps etc

Other related parts:

 

Company Profile

HangZhou Xihu (West Lake) Dis.ng Material Co., Ltd, started business since 1991, and was formally established as a registered company in 2002, with 5.3million RMB registered capital.

Before 2015, Xihu (West Lake) Dis.ng focused on the domestic market, and is a qualified supplier of Jianglu group and CHINAMFG in the military and mechanical products.

In 2015, Xihu (West Lake) Dis.ng set up the international marketing department, specializing in exporting concrete construction machinery, mining Roadheaders, and the related spare parts and accessories. With manufacturing bases in HangZhou, HangZhou and HangZhou cities.

Xihu (West Lake) Dis.ng owns branches “Cahi “in Kiev Ukraine, and “Speedlane Trade Limited” overseas company. Mainly export to Pakistan, Ukraine, Russia, and other EU countries and Southeast Asian countries under our own brands “Speedlane” and ” XIHU (WEST LAKE) DIS.NG”.

Xihu (West Lake) Dis.ng has got the CE certificate, and Ukraine’s Coal Mining Safety certificate and permission. Cooperated with Ukraine largest energy company, DTEK group, the world top 500, and established a long term and friendly partnership.

Xihu (West Lake) Dis.ng’s enterprise value: Striving, Loyalty, Honesty and Altruism;

Xihu (West Lake) Dis.ng’s work concept: Tomorrow never comes; Never slug; Deliver positive energy!

Xihu (West Lake) Dis.ng’s mission:

One Stop Shop in engineering construction machinery;

China Machinery, Global Services!

Export Projects

Exhibition & Customer Visit 

 

 

clamp coupling

How do Clamp Couplings Contribute to Reducing Backlash and Resonance in Rotating Machinery?

Clamp couplings play a crucial role in reducing backlash and resonance in rotating machinery, enhancing the overall performance and reliability of the system. Here’s how they achieve this:

1. Backlash Reduction:

Backlash is the play or clearance between mating components in a mechanical system. In rotating machinery, backlash can lead to lost motion, reduced precision, and inefficiencies. Clamp couplings offer several features that help minimize backlash:

  • Zero-Backlash Design: Some clamp couplings are designed with a split hub and a clamping mechanism that ensures a tight fit around the shafts. This zero-backlash design eliminates any clearance between the coupling and the shafts, reducing or even eliminating backlash.
  • High Clamping Force: Clamp couplings exert a strong clamping force on the shafts, ensuring a secure and rigid connection. This prevents any relative movement between the coupling and the shafts, further reducing backlash.

2. Resonance Damping:

Resonance occurs when the natural frequency of a rotating system matches the frequency of external forces or disturbances. This can lead to excessive vibrations and potential damage to the machinery. Clamp couplings can help dampen resonance in the following ways:

  • Material Selection: High-quality materials like stainless steel or aluminum alloy are commonly used in clamp couplings. These materials possess excellent damping properties, dissipating vibrations and minimizing resonance effects.
  • Precision Machining: Clamp couplings are precisely machined to maintain balance and reduce vibration during operation. Balanced couplings minimize the likelihood of resonant frequencies being excited, contributing to a smoother operation.
  • Torsional Stiffness: Clamp couplings offer controlled torsional stiffness, which helps prevent the buildup of excessive vibration amplitudes and reduces resonance occurrences.

3. Misalignment Compensation:

Another factor contributing to backlash and resonance is misalignment between shafts. Clamp couplings can accommodate a certain degree of angular, parallel, and axial misalignments, reducing the impact of misalignment-induced backlash and vibrations.

Overall, clamp couplings provide a secure and precise connection between shafts, minimizing backlash and resonance in rotating machinery. By choosing the appropriate clamp coupling based on the specific requirements of the application, engineers can optimize the performance and efficiency of the rotating system.

clamp coupling

Clamp Couplings and Damping Vibrations/Noise

Yes, clamp couplings can help dampen vibrations and reduce noise in mechanical systems to some extent. While not specifically designed as vibration isolators, clamp couplings can mitigate vibrations and noise due to their unique design and material properties.

The design of clamp couplings involves a split hub with screws that securely fasten around the shafts. This design offers several benefits:

  1. Damping Effect: The material of the coupling can absorb and dampen some of the vibrations generated by rotating equipment. Elastomeric elements or flexible materials used in some clamp couplings can help attenuate vibrations.
  2. Reduction of Resonance: Vibrations in rotating machinery can sometimes lead to resonance, causing excessive oscillations. Clamp couplings can help break the resonance cycle and prevent amplification of vibrations.
  3. Torsional Compliance: Some clamp couplings exhibit a degree of torsional compliance, which means they can tolerate small angular misalignments and dampen torsional vibrations.
  4. Transmissible Torque Variation: In some cases, clamp couplings can absorb torque spikes or variations, reducing the impact of sudden changes in load.

While clamp couplings can provide some level of vibration and noise reduction, their primary function is to transmit torque and accommodate misalignment between shafts. For more demanding vibration isolation or noise reduction applications, specialized components such as flexible couplings with damping features or dedicated vibration isolation mounts may be more suitable.

It is essential to consider the specific requirements of the mechanical system and consult with experts to determine the most appropriate coupling or isolator for achieving the desired level of vibration and noise reduction.

clamp coupling

Industry Standards and Certifications for Clamp Couplings

There are several industry standards and certifications that may apply to clamp couplings, depending on their design, materials, and intended applications. These standards ensure that the clamp couplings meet specific requirements and quality benchmarks, providing confidence in their performance and reliability.

Some of the commonly recognized standards and certifications for clamp couplings include:

  • ISO 9001: This is a quality management system standard that sets requirements for the design, development, production, and service of products. Manufacturers of clamp couplings may obtain ISO 9001 certification to demonstrate their commitment to quality and continuous improvement.
  • ASME B29.1: This standard is specific to roller chain drives and includes guidelines for chain coupling dimensions and interchangeability.
  • AGMA 9002-C16: This standard, developed by the American Gear Manufacturers Association, provides guidelines for inspection practices of flexible couplings, which may include clamp couplings.
  • API 671: This standard is specific to couplings used in petroleum, chemical, and gas industry services. It sets requirements for special-purpose couplings, such as those used in compressors and pumps.
  • DNV GL Type Approval: The Det Norske Veritas Germanischer Lloyd (DNV GL) provides type approval certification for couplings used in maritime and offshore applications. This certification ensures that the coupling meets specific quality and safety standards for marine use.
  • ATEX: For couplings used in explosive atmospheres, the ATEX directive sets requirements to prevent ignition sources and ensure safety. ATEX compliance may be necessary in certain industrial settings.

It’s important to note that not all clamp couplings require certification under these standards, as the applicability depends on the specific industry and use case. Additionally, some manufacturers may adhere to their own internal quality control measures without seeking external certifications.

When selecting clamp couplings for particular applications, it’s essential to consider whether specific industry standards or certifications are necessary. Consulting with suppliers or coupling manufacturers can help ensure that the chosen clamp couplings meet the required quality and safety standards for their intended use.

China Custom Concrete Spare Parts Forged Snap Bolt Clamp Coupling for Concrete Pump Pipeline  China Custom Concrete Spare Parts Forged Snap Bolt Clamp Coupling for Concrete Pump Pipeline
editor by CX 2023-12-14

China Best Sales 3A Inch Standard Stainless Steel Clamp Hose Coupling

Product Description

3A INCH Standard Stainless Steel Clamp Hose Coupling

Donjoy experienced 20 years of development whose product lines are constantly enriched and developed.

Our product are sold to all over the world, such as USA,Germany, Lebanon,UAE,UK,Saudi Arabia
 ,Cyprus,etc….

We attend many exhibitions,  such as IPACK IMA Exhibiton in Fieranilano, Milan-Italy, during 19-23 May 2015,booth NO. Hall7, C39; ACHEMA 2015 in Fankfute am Main Germany, during 15-19 June, booth No.AGPA/B4.

Specification

Product Name: SMS Standard Stainless Steel Threaded Hose Coupling(70079)
Body Material: ASTM 304/316L, 1.4301/1.4404
Size: 1″-4″
Connection: Threaded
Application: used in piping or equipment needed to connect hose assembly
Standard: SMS
Certificate: CE, ISO9001/2008,3A
Application scope:  Dairy, food, beer, beverage, pharmacy, cosmetic, etc
Packaging Details: Shrink wrapped – carton – wooden case . Or as per the request of customers
Delivery details: Depend on quantity,usually within 7 days after receiving T/T down payment

 

Size Length(mm) Inside Diameter(mm) Outside Diameter(mm)
1″ 90 20 25.4
1.25″ 100 27 32
1.5″ 100 33 38.1
2″ 125 46 50.8
2.5″ 140 57.5 63.5
3′ 160 70 76.2
4″ 170 96 101.6

 

clamp coupling

Are There Any Maintenance Requirements for Clamp Couplings to Ensure Their Longevity?

Yes, like any mechanical component, clamp couplings require regular maintenance to ensure their longevity and optimal performance. Proper maintenance can help prevent premature wear, reduce the risk of failure, and extend the service life of the coupling. Here are some essential maintenance practices for clamp couplings:

  • Regular Inspection: Perform visual inspections of the clamp coupling regularly to check for signs of wear, damage, or misalignment. Look for cracks, corrosion, or any deformation in the coupling components.
  • Lubrication: Some clamp couplings may require periodic lubrication to reduce friction between moving parts. Check the manufacturer’s guidelines for the appropriate lubrication schedule and use the recommended lubricant.
  • Bolt Tightening: Ensure that all the bolts and screws securing the clamp coupling are properly tightened according to the manufacturer’s specifications. Loose bolts can lead to misalignment and coupling failure.
  • Alignment: Regularly check the alignment of the connected shafts. Misalignment can cause excessive stress on the coupling and lead to premature wear. If misalignment is detected, it should be corrected promptly.
  • Environmental Protection: If the clamp coupling is used in harsh environments, take measures to protect it from dust, debris, and corrosive substances. Use suitable covers or guards to shield the coupling from external contaminants.
  • Load Monitoring: Be aware of the operating conditions and load requirements of the machinery. Excessive loads or shock loads can impact the performance of the coupling. Avoid exceeding the coupling’s specified torque and speed limits.
  • Regular Replacement: Even with proper maintenance, clamp couplings have a finite service life. It is essential to follow the manufacturer’s recommendations for replacing the coupling at the end of its expected lifespan or if any significant wear or damage is detected.

By following these maintenance practices, operators can ensure that the clamp couplings remain in good condition and continue to function reliably. Regular maintenance not only extends the coupling’s lifespan but also enhances the safety and efficiency of the entire mechanical system. Always refer to the manufacturer’s guidelines and instructions for the specific maintenance requirements of the clamp coupling model used in the application.

clamp coupling

Use of Clamp Couplings in Horizontal and Vertical Shaft Applications

Yes, clamp couplings can be used in both horizontal and vertical shaft applications. The design of clamp couplings allows them to provide secure and reliable shaft connections in various orientations, making them versatile for different mechanical systems.

Horizontal Shaft Applications: In horizontal shaft applications, clamp couplings are commonly used to connect two shafts in a straight line. They are often employed in conveyor systems, pumps, fans, and other machinery where the shafts are aligned horizontally. The clamping action of the coupling ensures a rigid and balanced connection, transmitting torque efficiently from one shaft to another.

Vertical Shaft Applications: In vertical shaft applications, such as in vertical pumps, mixers, or gearboxes, clamp couplings need to support the weight of the connected components in addition to transmitting torque. The design of clamp couplings with robust clamping screws ensures that the coupling remains securely fastened even in vertical orientations.

Factors to Consider: While clamp couplings are suitable for both horizontal and vertical shaft applications, there are some considerations to keep in mind:

  1. Load and Weight: In vertical shaft applications, the coupling must handle the weight of the rotating components. It is essential to choose a clamp coupling with sufficient load-carrying capacity to support the vertical arrangement.
  2. Alignment: Proper alignment of the shafts is crucial for any coupling, but it becomes particularly important in vertical applications to avoid excessive loads and premature wear.
  3. Material and Environment: Selecting the appropriate material and surface treatment for the clamp coupling is essential, especially if the application involves exposure to harsh environments or corrosive substances.

Overall, clamp couplings are a reliable and cost-effective choice for various shaft applications, and their ability to perform well in both horizontal and vertical orientations makes them widely used in a range of industrial machinery and equipment.

clamp coupling

Different Types of Clamp Couplings

Clamp couplings come in various designs to accommodate different shaft sizes, torque levels, and application requirements. Some common types of clamp couplings available in the market include:

  1. Two-Piece Clamp Couplings: This type of coupling consists of two separate hubs that are connected by a clamp. The clamp is tightened to secure the two hubs onto the shafts, creating a rigid connection. Two-piece clamp couplings are easy to install and suitable for applications with moderate torque and misalignment.
  2. One-Piece Clamp Couplings: As the name suggests, one-piece clamp couplings have a single-piece construction, which simplifies the installation process. They provide a compact and lightweight solution for low to medium torque applications.
  3. Double-Walled Clamp Couplings: These couplings have a unique double-walled design, providing better torque transmission capabilities and torsional rigidity. They are ideal for applications with high torque and precise positioning requirements.
  4. Set Screw Clamp Couplings: Set screw clamp couplings use set screws to secure the coupling onto the shaft. While they are simple and cost-effective, they may not handle high torque and misalignment as effectively as other types.
  5. Wedge Clamp Couplings: Wedge clamp couplings use a wedge-shaped collar to create a tight grip on the shaft. They offer excellent torque transmission and axial holding power, making them suitable for heavy-duty applications.
  6. Keyless Clamp Couplings: Keyless clamp couplings eliminate the need for keyways and key connection. Instead, they use compression to secure the coupling to the shaft, providing high torque capacity and easy installation.
  7. Hydraulic Clamp Couplings: Hydraulic clamp couplings use hydraulic pressure to tighten the clamp, ensuring uniform pressure distribution and secure shaft connections. They are commonly used in high-power and critical applications.
  8. Clamp Couplings with Tapered Bushings: These couplings feature tapered bushings that provide a tight fit on the shaft and enhance torque transmission capabilities. They are suitable for heavy-duty applications and high misalignment conditions.

The selection of the appropriate clamp coupling depends on the specific requirements of the mechanical system, such as torque levels, shaft sizes, misalignment allowances, and operating conditions. Consulting with coupling manufacturers or engineering experts can help in choosing the right type of clamp coupling for a particular application.

China Best Sales 3A Inch Standard Stainless Steel Clamp Hose Coupling  China Best Sales 3A Inch Standard Stainless Steel Clamp Hose Coupling
editor by CX 2023-12-14

China factory SS316 SS304 Single-Section Muti-Function Pipe Leak Repair Clamp Coupling

Product Description

Plastic Pipe Repair Clamp

 

Applied to connection of various kinds of metal pipes and composite materials of pipelines. Allowable angular deflection but does not provide restraint. It can provide safe, fast and steady connection and very good effect of anti-vibration and noise reduction, as well as function of distance compensation in pipe ends. Easy to be installed and disassembled and reusable.
 

Technical Parameters
 

Industry
WP
Dimensions
Cmax
L1 L2 D H Screws Screw
Torque
(bar) (mm) (mm) (mm) approx(mm) approx(mm) M Nm
32 3 57 35 50 6 15
32 3 57 50 70 6 15
32 3 57 50 70 6 15
32 3 57 55 75 6 15
32 3 57 55 75 6 15
32 5 57 55 75 6 15
32 5 57 65 85 6 15
32 5 57 65 85 6 15
32 5 57 100 70 90 6 15
32 5 57 100 70 90 8 30
32 5 57 100 80 100 8 30
32 5 80 139 85 105 8 30
32 5 80 139 85 105 8 30
28 5 80 139 100 120 8 30
28 5 80 139 100 120 8 30
28 5 107 203 110 130 10 50
28 5 107 203 130 150 10 50
28 5 107 203 130 150 10 50
28 5 107 203 135 155 10 50
28 5 107 203 140 160 10 50
28 5 107 203 150 185 10 50
28 5 107 203 160 190 10 50
28 5 116 203 165 195 12 80
24 5 116 203 185 215 12 80
24 5 116 203 190 215 12 80
24 5 116 203 195 225 12 80
24 5 116 203 195 225 12 80
16 10 155 255 240 270 14 100
16 10 155 255 250 280 14 100
16 10 155 255 285 315 14 100
16 10 155 255 305 335 14 100
14 10 155 255 340 375 14 100
14 10 155 255 360 390 14 100
14 10 155 255 385 420 14 100
14 10 155 255 410 440 14 100

 

Dimentions:

DN 21.7 mm – DN 2600 mm

Flexible Couplings can be used to repair the following pipe types:

Steel
GRP
HDPE-100
PVC
PIG Iron
Ductile Font Iron
Asbestos etc.

every kind of pipes are suitable to use Pipe Couplings.

Material specification:

Body:

  • AISI 304 Stainless Steel
  • AISI 316L Stainless Steel
  • AISI 1571 Galv. Steel

Sealing Sleeve:

  • EPDM (Drinkable nwater, waste water,air, solids and chemical products )
  • *NBR (Water, gas,air, oil, fuel and other hydrocarbons)

Vacuum Support Part:

  • AISI 304 Stainless Steel
  • AISI 316L Stainless Steel

Bolts & Stem:

  • Stem:Steel coated Dacromat500
  • ISI 316L Stainless Steel

 

clamp coupling

Can Clamp Couplings Be Used in High-Temperature or Corrosive Environments?

Yes, clamp couplings are designed to be versatile and can be used in a wide range of environments, including high-temperature and corrosive conditions. However, their suitability depends on the specific material and coating used in the construction of the coupling.

In high-temperature environments, clamp couplings made from materials such as stainless steel or high-temperature alloys are commonly used. These materials have excellent heat resistance and can withstand elevated temperatures without losing their structural integrity. It is essential to choose a clamp coupling with a temperature rating that exceeds the operating temperature of the application to ensure safe and reliable performance.

In corrosive environments where exposure to chemicals, moisture, or other corrosive substances is a concern, selecting a corrosion-resistant material is critical. Stainless steel clamp couplings, particularly those made from 316-grade stainless steel, are widely used in such conditions due to their superior corrosion resistance. For more aggressive corrosive environments, special coatings or surface treatments can be applied to further enhance the coupling’s resistance to corrosion.

It is essential to consider the specific requirements of the application when selecting a clamp coupling for use in high-temperature or corrosive environments. Factors such as temperature, humidity, exposure to chemicals, and the presence of abrasive substances should be taken into account. Consulting with coupling manufacturers or industry experts can help in choosing the most suitable clamp coupling for the intended application.

clamp coupling

Impact of Clamp Coupling Design on Performance in Heavy-Duty Applications

The design of a clamp coupling plays a crucial role in determining its performance, especially in heavy-duty applications. Here are some key design factors and their impact:

  • Material Selection: The choice of material affects the strength, durability, and resistance to wear and corrosion. In heavy-duty applications, steel clamp couplings are often preferred due to their high tensile strength and ability to withstand heavy loads and torque.
  • Torsional Rigidity: Heavy-duty applications often involve transmitting high levels of torque. A clamp coupling with higher torsional rigidity will maintain the connection between shafts more effectively, minimizing backlash and ensuring accurate power transmission.
  • Hub Design: The hub of the clamp coupling should have a robust and precise design to provide a secure grip on the shafts. In heavy-duty applications, keyless and multiple screw designs are commonly used to distribute clamping forces evenly and prevent slippage.
  • Number of Screws: The number of screws used to secure the clamp coupling to the shafts can impact its holding power. More screws distributed around the circumference can provide better balance and prevent distortion under heavy loads.
  • Clamping Force: The clamping force applied by the coupling affects the torque transmission capabilities. In heavy-duty applications, it is crucial to ensure that the clamping force is sufficient to prevent slippage between the coupling and the shafts.
  • Surface Treatment: The surface of the clamp coupling can be treated to enhance its resistance to corrosion, wear, and fatigue. Surface treatments like coating or plating can significantly improve the coupling’s performance and longevity in challenging environments.
  • Alignment: Proper alignment during installation is vital to prevent premature wear and excessive stress on the coupling. In heavy-duty applications, precision alignment using alignment tools or laser systems is recommended to maintain optimal performance and prevent premature failure.

Conclusion: In heavy-duty applications, selecting a clamp coupling with the right material, torsional rigidity, hub design, number of screws, and clamping force is critical to ensuring reliable and efficient power transmission. Proper installation, regular maintenance, and adherence to manufacturer’s guidelines will further enhance the performance and longevity of the clamp coupling in heavy-duty applications.

clamp coupling

Handling Misalignment with Clamp Couplings

Yes, clamp couplings are designed to handle certain degrees of misalignment between shafts effectively. They can accommodate both angular and parallel misalignments, making them versatile for various mechanical systems.

The design of clamp couplings allows for a certain degree of flexibility and forgiveness in the coupling’s connection. When the shafts are not perfectly aligned due to angular or parallel misalignment, the clamp coupling can compensate for these variations.

The main factors contributing to the clamp coupling’s ability to handle misalignment are:

  • Flexible Material: Clamp couplings are often made of materials like aluminum, stainless steel, or other alloys with some elasticity. This flexibility enables them to absorb and compensate for minor misalignments.
  • Split Design: Clamp couplings usually have a split design with one or more screws or bolts that can be tightened to secure the coupling around the shafts. This design allows for easy installation and adjustment, making it possible to accommodate slight misalignments during assembly.
  • Tightening Mechanism: The screws or bolts used to fasten the clamp coupling can be tightened to the appropriate torque, providing a secure connection while still allowing for a certain amount of movement to handle misalignment.

However, it’s important to note that clamp couplings have limitations when it comes to misalignment. Excessive misalignment can lead to increased wear on the coupling components and shafts, reducing the coupling’s lifespan and potentially causing failure. Therefore, it’s essential to ensure that the misalignment does not exceed the coupling’s specified limits.

For more significant misalignments or applications with constant large misalignments, flexible couplings like elastomeric couplings or gear couplings may be more suitable. It’s crucial to select the appropriate coupling type based on the specific misalignment requirements of the mechanical system.

In conclusion, while clamp couplings can handle certain degrees of misalignment effectively, it is essential to stay within the recommended misalignment limits to maintain the coupling’s performance and longevity.

China factory SS316 SS304 Single-Section Muti-Function Pipe Leak Repair Clamp Coupling  China factory SS316 SS304 Single-Section Muti-Function Pipe Leak Repair Clamp Coupling
editor by CX 2023-12-12

China Best Sales Custom Precision Clamping Type Flexible Disc Jaw Oldham Coupling

Product Description

Custom Precision Clamping Type Flexible Disc Coupling Jaw Coupling Oldham Coupling with CNC Machining

Product Description

Coupling refers to a device that connects 2 shafts or shafts and rotating parts, rotates together during the transmission of motion and power, and does not disengage under normal conditions. Sometimes it is also used

as a safety device to prevent the connected parts from bearing excessive load, which plays the role of overload protection.

Couplings can be divided into rigid couplings and flexible couplings. Rigid couplings do not have buffering property and the ability to compensate the relative displacement of 2 axes. It is required that the 2 axes be strictly aligned. However, such couplings are simple in structure, low in manufacturing cost, convenient in assembly and disassembly, and maintenance, which can ensure that the 2 axes are relatively neutral, have large transmission torque, and are widely used. Commonly used are flange coupling, sleeve coupling and jacket coupling.

Flexible coupling can also be divided into flexible coupling without elastic element and flexible coupling with elastic element. The former type only has the ability to compensate the relative displacement of 2 axes, but cannot cushion and reduce vibration. Common types include slider coupling, gear coupling, universal coupling and chain coupling; The latter type contains elastic elements. In addition to the ability to compensate the relative displacement
of 2 axes, it also has the functions of buffering and vibration reduction. 

Our leading mainly including universal couplings, drum gear couplings, elastic couplings etc.
Main production equipments:
Large lathe, surface grinder, milling machine, spline milling machine, horizontal broaching machine, gear hobbing machine, shaper, slotting machine, bench drilling machine, radial drilling machine, boring machine, band sawing machine, horizontal lathe, end milling machine, crankshaft grinder, CNC milling machine, etc.

Coupling performance
1) Mobility. The movability of the coupling refers to the ability to compensate the relative displacement of 2 rotating components. Factors such as manufacturing and installation errors between connected components, temperature changes during operation and deformation under load all put CHINAMFG requirements for mobility. The movable performance compensates or alleviates the additional load between shafts, bearings, couplings and other components caused by the relative displacement between rotating components.
(2) Buffering. For the occasions where the load is often started or the working load changes, the coupling shall be equipped with elastic elements that play the role of cushioning and vibration reduction to protect the prime mover and the working machine from little or no damage.
(3) Safe, reliable, with sufficient strength and service life.
(4) Simple structure, easy to assemble, disassemble and maintain.

 

Inspection equipment:
Dynamic balance tester, high-speed intelligent carbon and sulfur analyzer, Blochon optical hardness tester, Leeb hardness tester, magnetic yoke flaw detector etc.

  
It is widely used in metallurgical steel rolling, wind power, hydropower, mining, engineering machinery, petrochemical, lifting, paper making, rubber, rail transit, shipbuilding and marine engineering and other industries.

How to select the appropriate coupling type
The following items should be considered when selecting the coupling type.
1. The size and nature of the required transmission torque, the requirements for buffering and damping functions, and whether resonance may occur.
2. The relative displacement of the axes of the 2 shafts is caused by manufacturing and assembly errors, shaft load and thermal expansion deformation, and relative movement between components.
3. Permissible overall dimensions and installation methods, and necessary operating space for assembly, adjustment and maintenance. For large couplings, they should be able to be disassembled without axial movement of the shaft.
In addition, the working environment, service life, lubrication, sealing, economy and other conditions should also be considered, and a suitable coupling type should be selected by referring to the characteristics of various couplings.
If you cannot determine the type, you can contact our professional engineer.
               Q: Why choose Shengao product?
               A: We have our own factory, therefore, we can surely promise the quality of product and provide 
                   you competitive price.

               Q: Do you provide OEM Service?
               A: Yes, we provide OEM Service.

               Q: Do you provide customized machining parts?
               A: Yes. Customers give us drawings and specifications, and we will produce accordingly.

               Q: What is your payment term?
               A: We provide kinds of payment terms such as L/C, T/T, Paypal, Escrow, etc.

               If there’s anything we can help, please feel free to contact with us.

 

clamp coupling

Are There Any Safety Considerations When Using Clamp Couplings in Specific Applications?

While clamp couplings are generally considered safe and reliable, there are specific safety considerations to keep in mind when using them in various applications:

  1. Proper Installation: Ensuring the clamp coupling is installed correctly is crucial for its safe operation. Follow the manufacturer’s guidelines and torque specifications during installation to prevent coupling failure.
  2. Maintenance: Regular maintenance is essential to identify wear, corrosion, or damage that could compromise the coupling’s integrity. Replace worn or damaged parts promptly to prevent unexpected failures.
  3. Temperature and Environment: Consider the operating temperature and environmental conditions of the application. In high-temperature or corrosive environments, choose materials like stainless steel that can withstand such conditions without compromising safety.
  4. Alignment: Misalignment between shafts can lead to premature wear and coupling failure. Ensure the shafts are properly aligned to prevent excessive stress on the coupling.
  5. Overloading: Avoid exceeding the torque and speed limits specified by the manufacturer. Overloading the coupling can lead to premature failure and safety hazards.
  6. Dynamic Balancing: In rotating machinery, ensure that components are dynamically balanced to reduce vibrations that could affect the coupling’s performance and cause fatigue failure.
  7. Periodic Inspection: Regularly inspect the clamp coupling and surrounding components for signs of wear, fatigue, or damage. Address any issues promptly to prevent unexpected failures.
  8. Application-Specific Considerations: Consider the specific requirements of the application. For example, in food processing, choose couplings that meet hygienic standards, while in explosive environments, consider couplings with anti-spark features.
  9. Training and Awareness: Ensure that personnel working with clamp couplings are adequately trained and aware of safety guidelines to handle the equipment properly.

By adhering to these safety considerations and taking appropriate precautions, clamp couplings can be used safely and effectively in various applications, contributing to the reliability and efficiency of mechanical systems.

clamp coupling

Real-World Case Studies of Clamp Couplings in Engineering Projects

Clamp couplings have been widely used in various engineering projects, showcasing their effectiveness and reliability. Here are some real-world case studies:

  1. Wind Turbine Applications: In the renewable energy sector, wind turbines require efficient power transmission between the rotor and generator. Clamp couplings have been successfully used to connect the shafts, allowing for easy installation, alignment, and maintenance. Their ability to handle high torque and misalignment ensures reliable performance even in harsh environmental conditions.
  2. Industrial Machinery: In heavy machinery and industrial equipment, clamp couplings have proven to be a preferred choice for connecting rotating shafts. A case study involving a large-scale conveyor system in a mining operation demonstrated that clamp couplings provided excellent torque transmission and allowed for quick and straightforward replacement during maintenance.
  3. Marine Propulsion Systems: Clamp couplings are widely used in marine propulsion systems for boats and ships. A case study involving a commercial vessel showed that stainless steel clamp couplings significantly reduced maintenance downtime due to their corrosion resistance and ability to handle dynamic loads, ensuring smooth and reliable operation.
  4. Aerospace Applications: In the aerospace industry, clamp couplings have been employed in critical components such as flight control systems and engine assemblies. A case study involving an aircraft engine demonstrated that clamp couplings provided precise and robust shaft connections, contributing to the overall performance and safety of the aircraft.
  5. Automotive Engineering: In automotive engineering, clamp couplings are used in various drivetrain components. A case study involving an electric vehicle showcased that clamp couplings allowed for compact and lightweight designs, minimizing power losses and enhancing energy efficiency.

Conclusion: These case studies highlight the versatility and reliability of clamp couplings in diverse engineering projects. Whether in renewable energy, heavy machinery, marine, aerospace, or automotive applications, clamp couplings have proven to be an effective solution for connecting rotating shafts, providing efficient power transmission, and reducing maintenance downtime.

clamp coupling

Advantages of Using a Clamp Coupling

A clamp coupling offers several advantages compared to other types of couplings, making it a popular choice in various mechanical systems:

  • Easy Installation: Clamp couplings are simple to install and require minimal tools and expertise. The design allows for quick assembly and disassembly, making maintenance and shaft replacement convenient.
  • Cost-Effective: With a straightforward design and fewer components, clamp couplings are cost-effective to manufacture and purchase.
  • High Torque Transmission: Clamp couplings can handle high torque loads, making them suitable for heavy-duty applications in industries like manufacturing, mining, and construction.
  • Zero Backlash: The clamping mechanism ensures a tight fit between the shafts and the hubs, resulting in zero backlash. This feature is vital for applications that require accurate and precise motion transfer.
  • Flexibility: Clamp couplings can accommodate different shaft sizes and materials, providing flexibility in system design and shaft compatibility.
  • Compact Design: The compact and lightweight design of clamp couplings makes them ideal for applications with space constraints.
  • No Lubrication Needed: Unlike some other couplings, clamp couplings do not require lubrication, reducing maintenance requirements and eliminating the risk of leakage or contamination in certain environments.
  • High Misalignment Tolerance: Clamp couplings can handle moderate levels of angular, parallel, and axial misalignment, ensuring reliable operation even when shafts are not perfectly aligned.
  • Reduced Downtime: The ease of installation and maintenance of clamp couplings contributes to reduced downtime during equipment repairs or replacements.

Due to these advantages, clamp couplings are widely used in various industries and mechanical setups for their simplicity, reliability, and cost-effectiveness in transmitting torque and rotational motion between shafts.

China Best Sales Custom Precision Clamping Type Flexible Disc Jaw Oldham Coupling  China Best Sales Custom Precision Clamping Type Flexible Disc Jaw Oldham Coupling
editor by CX 2023-12-12

China Hot selling Hobond Brand 304 Stainless Steel Pipe Clamp Pipe Repair Coupling

Product Description

Product Description

 

A clamp for the quick repair of pit holes, punctures or splits in steel pipe.Repairs leaks on water,gas,oil and pressure steam lines up to 20kgf/cm2.The features are the same as the pipe couplling except for the working pressure.
 

Product Parameters

 

 

NO. DESCRIPTION UNIT
1 HOBOND Pipe Repair Clamps 50A For Pipe OD 57-61mm Rubber:EPDM Pcs
2 HOBOND Pipe Repair Clamps 650A For Pipe OD 74-78mm Rubber:EPDM Pcs
3 HOBOND Pipe Repair Clamps 80A For Pipe OD 87-93mm Rubber:EPDM Pcs
4 HOBOND Pipe Repair Clamps 100A For Pipe OD 112-118mm Rubber:EPDM Pcs
5 HOBOND Pipe Repair Clamps 125A For Pipe OD 137-142mm Rubber:EPDM Pcs
6 HOBOND Pipe Repair Clamps 150A For Pipe OD 165-171mm Rubber:EPDM Pcs
7 HOBOND Pipe Repair Clamps 200A For Pipe OD 211-221mm Rubber:EPDM Pcs
8 HOBOND Pipe Repair Clamps 250A For Pipe OD 263-273mm Rubber:EPDM Pcs
9 HOBOND Pipe Repair Clamps 300A For Pipe OD 314-324mm Rubber:EPDM Pcs
10 HOBOND Pipe Repair Clamps 50A For Pipe OD 57-61mm Rubber:NBR Pcs
11 HOBOND Pipe Repair Clamps 65A For Pipe OD 74-78mm Rubber:NBR Pcs
12 HOBOND Pipe Repair Clamps 80A For Pipe OD 87-93mm Rubber:NBR Pcs
13 HOBOND Pipe Repair Clamps 100A For Pipe OD 112-118mm Rubber:NBR Pcs
14 HOBOND Pipe Repair Clamps 125A For Pipe OD 137-142mm Rubber:NBR Pcs
15 HOBOND Pipe Repair Clamps 150A For Pipe OD 165-171mm Rubber:NBR Pcs
16 HOBOND Pipe Repair Clamps 200A For Pipe OD 211-221mm Rubber:NBR Pcs
17 HOBOND Pipe Repair Clamps 250A For Pipe OD 263-273mm Rubber:NBR Pcs
18 HOBOND Pipe Repair Clamps 300A For Pipe OD 314-324mm Rubber:NBR Pcs

Detailed Photos

 

 

To better ensure the safety of your goods, professional, environmentally friendly, convenient and efficient packaging services will be provided.

 >> “EXCELLENT QUALITY” , “BEST PRICE”, “SOONEST TIME”<<

 

>> One of the biggest marine hardware wholesaler in china.

>> 15 years of professional reliable service.

>>10000 square CHINAMFG store warehouse guarantee the shortest delivery time

>> Member Of IMPA International Marine Purchasing Association.

 

 

Q: What qualifications does your company have ?
A:IMPA Member and IMPA Standardized Products
World Top 10 Ship Chandlers’s Expertised Supplier for 15 Years. 
Authorization of “AAA Grade Credit Enterprise” from Government 

Q: Can I get qualified products? I do not want any shortage , damaged products 
A: Professional Q.C. (quality control) Team & Testing Equipment
Correspondent and Effective CCS, MED, CE Certificates 
Exclusive and Famous Brand” KENPO,SEMPO,HOBOND,FASEAL ,GLM”

Q: How long is the delivery time?
A:1~15days Quick Delivery Time . 
Abundant Stock Items at Hand
Big Stock Capacity Guarantee (10000-Warehouse)
Various Logistics Option(DHL, TNT, Rail/Air/Sea Freight)

clamp coupling

How do Clamp Couplings Contribute to Reducing Backlash and Resonance in Rotating Machinery?

Clamp couplings play a crucial role in reducing backlash and resonance in rotating machinery, enhancing the overall performance and reliability of the system. Here’s how they achieve this:

1. Backlash Reduction:

Backlash is the play or clearance between mating components in a mechanical system. In rotating machinery, backlash can lead to lost motion, reduced precision, and inefficiencies. Clamp couplings offer several features that help minimize backlash:

  • Zero-Backlash Design: Some clamp couplings are designed with a split hub and a clamping mechanism that ensures a tight fit around the shafts. This zero-backlash design eliminates any clearance between the coupling and the shafts, reducing or even eliminating backlash.
  • High Clamping Force: Clamp couplings exert a strong clamping force on the shafts, ensuring a secure and rigid connection. This prevents any relative movement between the coupling and the shafts, further reducing backlash.

2. Resonance Damping:

Resonance occurs when the natural frequency of a rotating system matches the frequency of external forces or disturbances. This can lead to excessive vibrations and potential damage to the machinery. Clamp couplings can help dampen resonance in the following ways:

  • Material Selection: High-quality materials like stainless steel or aluminum alloy are commonly used in clamp couplings. These materials possess excellent damping properties, dissipating vibrations and minimizing resonance effects.
  • Precision Machining: Clamp couplings are precisely machined to maintain balance and reduce vibration during operation. Balanced couplings minimize the likelihood of resonant frequencies being excited, contributing to a smoother operation.
  • Torsional Stiffness: Clamp couplings offer controlled torsional stiffness, which helps prevent the buildup of excessive vibration amplitudes and reduces resonance occurrences.

3. Misalignment Compensation:

Another factor contributing to backlash and resonance is misalignment between shafts. Clamp couplings can accommodate a certain degree of angular, parallel, and axial misalignments, reducing the impact of misalignment-induced backlash and vibrations.

Overall, clamp couplings provide a secure and precise connection between shafts, minimizing backlash and resonance in rotating machinery. By choosing the appropriate clamp coupling based on the specific requirements of the application, engineers can optimize the performance and efficiency of the rotating system.

clamp coupling

Real-World Case Studies of Clamp Couplings in Engineering Projects

Clamp couplings have been widely used in various engineering projects, showcasing their effectiveness and reliability. Here are some real-world case studies:

  1. Wind Turbine Applications: In the renewable energy sector, wind turbines require efficient power transmission between the rotor and generator. Clamp couplings have been successfully used to connect the shafts, allowing for easy installation, alignment, and maintenance. Their ability to handle high torque and misalignment ensures reliable performance even in harsh environmental conditions.
  2. Industrial Machinery: In heavy machinery and industrial equipment, clamp couplings have proven to be a preferred choice for connecting rotating shafts. A case study involving a large-scale conveyor system in a mining operation demonstrated that clamp couplings provided excellent torque transmission and allowed for quick and straightforward replacement during maintenance.
  3. Marine Propulsion Systems: Clamp couplings are widely used in marine propulsion systems for boats and ships. A case study involving a commercial vessel showed that stainless steel clamp couplings significantly reduced maintenance downtime due to their corrosion resistance and ability to handle dynamic loads, ensuring smooth and reliable operation.
  4. Aerospace Applications: In the aerospace industry, clamp couplings have been employed in critical components such as flight control systems and engine assemblies. A case study involving an aircraft engine demonstrated that clamp couplings provided precise and robust shaft connections, contributing to the overall performance and safety of the aircraft.
  5. Automotive Engineering: In automotive engineering, clamp couplings are used in various drivetrain components. A case study involving an electric vehicle showcased that clamp couplings allowed for compact and lightweight designs, minimizing power losses and enhancing energy efficiency.

Conclusion: These case studies highlight the versatility and reliability of clamp couplings in diverse engineering projects. Whether in renewable energy, heavy machinery, marine, aerospace, or automotive applications, clamp couplings have proven to be an effective solution for connecting rotating shafts, providing efficient power transmission, and reducing maintenance downtime.

clamp coupling

Different Types of Clamp Couplings

Clamp couplings come in various designs to accommodate different shaft sizes, torque levels, and application requirements. Some common types of clamp couplings available in the market include:

  1. Two-Piece Clamp Couplings: This type of coupling consists of two separate hubs that are connected by a clamp. The clamp is tightened to secure the two hubs onto the shafts, creating a rigid connection. Two-piece clamp couplings are easy to install and suitable for applications with moderate torque and misalignment.
  2. One-Piece Clamp Couplings: As the name suggests, one-piece clamp couplings have a single-piece construction, which simplifies the installation process. They provide a compact and lightweight solution for low to medium torque applications.
  3. Double-Walled Clamp Couplings: These couplings have a unique double-walled design, providing better torque transmission capabilities and torsional rigidity. They are ideal for applications with high torque and precise positioning requirements.
  4. Set Screw Clamp Couplings: Set screw clamp couplings use set screws to secure the coupling onto the shaft. While they are simple and cost-effective, they may not handle high torque and misalignment as effectively as other types.
  5. Wedge Clamp Couplings: Wedge clamp couplings use a wedge-shaped collar to create a tight grip on the shaft. They offer excellent torque transmission and axial holding power, making them suitable for heavy-duty applications.
  6. Keyless Clamp Couplings: Keyless clamp couplings eliminate the need for keyways and key connection. Instead, they use compression to secure the coupling to the shaft, providing high torque capacity and easy installation.
  7. Hydraulic Clamp Couplings: Hydraulic clamp couplings use hydraulic pressure to tighten the clamp, ensuring uniform pressure distribution and secure shaft connections. They are commonly used in high-power and critical applications.
  8. Clamp Couplings with Tapered Bushings: These couplings feature tapered bushings that provide a tight fit on the shaft and enhance torque transmission capabilities. They are suitable for heavy-duty applications and high misalignment conditions.

The selection of the appropriate clamp coupling depends on the specific requirements of the mechanical system, such as torque levels, shaft sizes, misalignment allowances, and operating conditions. Consulting with coupling manufacturers or engineering experts can help in choosing the right type of clamp coupling for a particular application.

China Hot selling Hobond Brand 304 Stainless Steel Pipe Clamp Pipe Repair Coupling  China Hot selling Hobond Brand 304 Stainless Steel Pipe Clamp Pipe Repair Coupling
editor by CX 2023-12-04

China Professional Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28

Product Description

GHC Oldham type coupling cross sliding clamp coupling


Description of
 GHC Oldham type coupling cross sliding clamp coupling
>The colloid material is imported PA66, which has good wear resistance, corrosion resistance and electrical insulation
>Sliding design can compensate radial and angular deviation more effectively
>Detachable design, easy to install
>Fastening method of clamping screw

Dimensions of GHC Oldham type coupling cross sliding clamp coupling

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GHC-16X21 4,5,6,6.35 16 21 8.6 11.6 2.5 M2.5 1
GHC-16X30 4,5,6,6.35 16 30 13.1 11.6 3 M2.5 1
GHC-20X22 5,6,6.35,7,8 20 22 8.6 12.7 2.5 M2.5 1
GHC-20×33 5,6,6.35,7,8 20 33 14.1 12.7 3 M2.5 1
GHC-25×28 5,6,6.35,8,9,9.525,10,11,12 25 28 11.7 16.65 3 M3 1.5
GHC-25X39 5,6,6.35,8,9,9.525,10,11,12 25 39 17.2 16.65 4.2 M3 1.5
GHC-32X33 5,6,8,9,9.525,10,11,12.12.7,14,15,16 32 33 14 19.5 3 M4 2.5
GHC-32X45 5,6,8,9,9.525,10,11,12,12.7,14,15,16 32 45 20 19.5 4.5 M4 2.5
GHC-40X50 8,9,9.525,10,11,12,14,15,16,17,18,19 40 50 23 18.4 7 M5 7
GHC-45X46 8,9,9.525,10,11,12,14,15,16,17,18,19,20,22 45 46 21 18.4 7 M5 7
GHC-50X53 10,11,12.7,14,15,16,17,18,19,20,22,24 50 53 24 15 7.5 M6 12
GHC-50X58 10,11,12.7,14,15,16,17,18,19,20,22,24 50 58 26.5 17.5 8 M6 12
GHC-55X57 10,11,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 57 26 17.5 7.8 M6 12
GHC-63X71 14,15,16,17,18,19,20,22,24,25,28,30,32 63 71 33 24 10 M8 20
GHC-70X77 14,15,16,17,18,19,20,22,24,25,28,30,32,35,38 70 77 29.5 25 12 M8 20

  

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GHC-16X21 0.7 0.8 3 ±0.2 8500 30 5.5×10-7 High strength aluminum alloy P A 6 6 Anodizing treatment 8
GHC-16X30 0.7 0.8 3 ±0.2 9000 30 5.9×10-7 12
GHC-20X22 1.2 1.2 3 ±0.2 6500 58 1.3×10-6 13
GHC-20×33 1.2 1.2 3 ±0.2 7000 58 1.5×10-6 19
GHC-25X28 2 1.6 3 ±0.2 5500 130 4.0×10-6 24
GHC-25X39 22 1.6 3 ±0.2 6000 130 4.5×10-6 35
GHC-32X33 4.5 2 3 ±0.2 4500 270 1.3×10-5 48
GHC-32X45 4.5 2 3 ±0.2 4800 270 1.5×10-5 67
GHC-40X50 9 2.4 3 ±0.2 3600 520 4.2×10-5 114
GHC-45X46 12 2.5 3 ±0.2 3500 800 4.5×10-5 140
GHC-50X53 19 2.6 3 ±0.2 3000 800 1.0×10-4 190
GHC-50X58 19 3 3 ±0.2 3000 800 1.1×10-4 215
GHC-55X57 25 3.2 3 ±0.2 3000 900 1.3×10-5 260
GHC-63X71 33 3 3 ±0.2 2550 1200 3.5×10-4 455
GHC-70X77 56 3.5 3 ±0.2 2500 1260 4.1×10-5 520

 

clamp coupling

What are the Torque and Speed Limits of Clamp Couplings in Various Applications?

The torque and speed limits of clamp couplings vary depending on their design, material, and application. Generally, clamp couplings are suitable for a wide range of torque and speed requirements in various mechanical systems. Here are some considerations:

Torque Limits:

Clamp couplings can handle a broad range of torque values, making them suitable for low, medium, and high torque applications. The torque capacity is influenced by factors such as the material and size of the coupling, as well as the clamping force applied to the shaft.

It is crucial to select a clamp coupling that can handle the maximum torque generated in the system during operation. Oversizing the coupling ensures it can safely transmit the required torque without reaching its limits, reducing the risk of premature failure.

Speed Limits:

Similar to torque limits, the speed limits of clamp couplings are influenced by their design and material. In high-speed applications, factors like centrifugal forces and resonance become significant considerations.

Clamp couplings made from high-strength materials like stainless steel or alloy steel can handle higher speeds with minimal risk of deformation or failure. Additionally, precision machining and balancing of the coupling help reduce vibration and maintain stability at elevated speeds.

Application-Specific Considerations:

When using clamp couplings in specific applications, factors like shock loads, reversing loads, and misalignment should be accounted for. These dynamic forces can impact the overall performance and durability of the coupling.

It is essential to consult the manufacturer’s specifications and guidelines for torque and speed ratings. Additionally, engineering calculations and simulations can help determine the most suitable clamp coupling for a particular application.

Professional Advice:

If you are unsure about the torque and speed limits of clamp couplings for your specific application, it is advisable to seek professional advice from coupling manufacturers or engineering experts. They can provide valuable insights and recommend the most appropriate coupling for your requirements, ensuring reliable and efficient power transmission in your mechanical system.

clamp coupling

Impact of Clamp Coupling Design on Performance in Heavy-Duty Applications

The design of a clamp coupling plays a crucial role in determining its performance, especially in heavy-duty applications. Here are some key design factors and their impact:

  • Material Selection: The choice of material affects the strength, durability, and resistance to wear and corrosion. In heavy-duty applications, steel clamp couplings are often preferred due to their high tensile strength and ability to withstand heavy loads and torque.
  • Torsional Rigidity: Heavy-duty applications often involve transmitting high levels of torque. A clamp coupling with higher torsional rigidity will maintain the connection between shafts more effectively, minimizing backlash and ensuring accurate power transmission.
  • Hub Design: The hub of the clamp coupling should have a robust and precise design to provide a secure grip on the shafts. In heavy-duty applications, keyless and multiple screw designs are commonly used to distribute clamping forces evenly and prevent slippage.
  • Number of Screws: The number of screws used to secure the clamp coupling to the shafts can impact its holding power. More screws distributed around the circumference can provide better balance and prevent distortion under heavy loads.
  • Clamping Force: The clamping force applied by the coupling affects the torque transmission capabilities. In heavy-duty applications, it is crucial to ensure that the clamping force is sufficient to prevent slippage between the coupling and the shafts.
  • Surface Treatment: The surface of the clamp coupling can be treated to enhance its resistance to corrosion, wear, and fatigue. Surface treatments like coating or plating can significantly improve the coupling’s performance and longevity in challenging environments.
  • Alignment: Proper alignment during installation is vital to prevent premature wear and excessive stress on the coupling. In heavy-duty applications, precision alignment using alignment tools or laser systems is recommended to maintain optimal performance and prevent premature failure.

Conclusion: In heavy-duty applications, selecting a clamp coupling with the right material, torsional rigidity, hub design, number of screws, and clamping force is critical to ensuring reliable and efficient power transmission. Proper installation, regular maintenance, and adherence to manufacturer’s guidelines will further enhance the performance and longevity of the clamp coupling in heavy-duty applications.

clamp coupling

Advantages of Using a Clamp Coupling

A clamp coupling offers several advantages compared to other types of couplings, making it a popular choice in various mechanical systems:

  • Easy Installation: Clamp couplings are simple to install and require minimal tools and expertise. The design allows for quick assembly and disassembly, making maintenance and shaft replacement convenient.
  • Cost-Effective: With a straightforward design and fewer components, clamp couplings are cost-effective to manufacture and purchase.
  • High Torque Transmission: Clamp couplings can handle high torque loads, making them suitable for heavy-duty applications in industries like manufacturing, mining, and construction.
  • Zero Backlash: The clamping mechanism ensures a tight fit between the shafts and the hubs, resulting in zero backlash. This feature is vital for applications that require accurate and precise motion transfer.
  • Flexibility: Clamp couplings can accommodate different shaft sizes and materials, providing flexibility in system design and shaft compatibility.
  • Compact Design: The compact and lightweight design of clamp couplings makes them ideal for applications with space constraints.
  • No Lubrication Needed: Unlike some other couplings, clamp couplings do not require lubrication, reducing maintenance requirements and eliminating the risk of leakage or contamination in certain environments.
  • High Misalignment Tolerance: Clamp couplings can handle moderate levels of angular, parallel, and axial misalignment, ensuring reliable operation even when shafts are not perfectly aligned.
  • Reduced Downtime: The ease of installation and maintenance of clamp couplings contributes to reduced downtime during equipment repairs or replacements.

Due to these advantages, clamp couplings are widely used in various industries and mechanical setups for their simplicity, reliability, and cost-effectiveness in transmitting torque and rotational motion between shafts.

China Professional Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28  China Professional Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28
editor by CX 2023-12-04

China Standard Concrete Pump Spare Parts 5″ Concrete Pump Snap Coupling Clamp

Product Description

DN125 Concrete Pipe Clamp for Concrete Pump Truck

Advantages:

1. Precision die forging technology manufacturing, high strength, light weight.
2. Special heat treatment process with comprehensive performance

Specification:

Name Description
Bolt Clamp 2″Forging And Casting
Bolt Clamp 3″Forging And Casting
Bolt Clamp 4″Forging And Casting
Bolt Clamp 5″Forging And Casting
Bolt Clamp 6″Forging And Casting
Bolt Clamp With Bracket 5″Forging And Casting
Twin Bolt Clamp 5″Forging And Casting
Snap Clamp 2″Forging And Casting
Snap Clamp 3″Forging And Casting
Snap Clamp 4″Forging And Casting
Snap Clamp 4.5″Forging And Casting
Snap Clamp 5″Forging And Casting
Snap Clamp 6″Forging And Casting

Picture for Concrete pipe coupling:

We, Xihu (West Lake) Dis.ng group can provide full set of concrete pump spare parts: wear plate and cutting ring, s pipe, s valve assy, delivery cylinder, delivery piston, delivery pipe, elbow, taper bend, clamp coupling, rubber hose, filter element, seal kits, gear pump, water pump, remote control, hydraulic pumps etc

Other spare parts: 


 

Related equipment

Company Profile

HangZhou Xihu (West Lake) Dis.ng Material Co., Ltd, started business since 1991, and was formally established as a registered company in 2002, with 5.3million RMB registered capital.

Before 2015, Xihu (West Lake) Dis.ng focused on the domestic market, and is a qualified supplier of Jianglu group and CHINAMFG in the military and mechanical products.

In 2015, Xihu (West Lake) Dis.ng set up the international marketing department, specializing in exporting concrete construction machinery, mining Roadheaders, and the related spare parts and accessories. With manufacturing bases in HangZhou, HangZhou and HangZhou cities.

Xihu (West Lake) Dis.ng owns branches “Cahi “in Kiev Ukraine, and “Speedlane Trade Limited” overseas company. Mainly export to Pakistan, Ukraine, Russia, and other EU countries and Southeast Asian countries under our own brands “Speedlane” and ” XIHU (WEST LAKE) DIS.NG”.

Xihu (West Lake) Dis.ng has got the CE certificate, and Ukraine’s Coal Mining Safety certificate and permission. Cooperated with Ukraine largest energy company, DTEK group, the world top 500, and established a long term and friendly partnership.

Xihu (West Lake) Dis.ng’s enterprise value: Striving, Loyalty, Honesty and Altruism.

Xihu (West Lake) Dis.ng’s work concept: Never Leave Today’s Work for Tomorrow.Transmit Positive Energy!

Xihu (West Lake) Dis.ng’s mission:

One Stop Shop in engineering construction machinery;

China Machinery, Global Services!

Factory Show

Certification 

Logistic and payment 

FAQ

Contact

 

clamp coupling

What are the Torque and Speed Limits of Clamp Couplings in Various Applications?

The torque and speed limits of clamp couplings vary depending on their design, material, and application. Generally, clamp couplings are suitable for a wide range of torque and speed requirements in various mechanical systems. Here are some considerations:

Torque Limits:

Clamp couplings can handle a broad range of torque values, making them suitable for low, medium, and high torque applications. The torque capacity is influenced by factors such as the material and size of the coupling, as well as the clamping force applied to the shaft.

It is crucial to select a clamp coupling that can handle the maximum torque generated in the system during operation. Oversizing the coupling ensures it can safely transmit the required torque without reaching its limits, reducing the risk of premature failure.

Speed Limits:

Similar to torque limits, the speed limits of clamp couplings are influenced by their design and material. In high-speed applications, factors like centrifugal forces and resonance become significant considerations.

Clamp couplings made from high-strength materials like stainless steel or alloy steel can handle higher speeds with minimal risk of deformation or failure. Additionally, precision machining and balancing of the coupling help reduce vibration and maintain stability at elevated speeds.

Application-Specific Considerations:

When using clamp couplings in specific applications, factors like shock loads, reversing loads, and misalignment should be accounted for. These dynamic forces can impact the overall performance and durability of the coupling.

It is essential to consult the manufacturer’s specifications and guidelines for torque and speed ratings. Additionally, engineering calculations and simulations can help determine the most suitable clamp coupling for a particular application.

Professional Advice:

If you are unsure about the torque and speed limits of clamp couplings for your specific application, it is advisable to seek professional advice from coupling manufacturers or engineering experts. They can provide valuable insights and recommend the most appropriate coupling for your requirements, ensuring reliable and efficient power transmission in your mechanical system.

clamp coupling

Potential Causes of Failure in Clamp Couplings and Prevention

While clamp couplings are robust and reliable, certain factors can lead to failure if not addressed properly. Here are some potential causes of failure and the corresponding prevention measures:

  1. Insufficient Torque: If the coupling is not tightened to the recommended torque, it may slip or come loose during operation. To prevent this, always follow the manufacturer’s torque specifications and use a torque wrench during installation.
  2. Material Fatigue: Repeated load cycles and excessive vibration can lead to material fatigue and eventual failure. Choosing high-quality materials and performing regular inspections can help detect fatigue and replace the coupling before failure occurs.
  3. Corrosion: In corrosive environments, the coupling’s material may degrade over time, compromising its strength. Using stainless steel or other corrosion-resistant materials can prevent this issue.
  4. Improper Alignment: Misalignment between shafts can put undue stress on the coupling, leading to premature failure. Properly align the shafts during installation to avoid this problem.
  5. Overloading: Exceeding the maximum torque or speed limits specified by the manufacturer can cause the coupling to fail. Stay within the recommended operating parameters to prevent overloading.
  6. Temperature Extremes: Extreme temperatures can affect the material properties and cause the coupling to become brittle or lose its integrity. Select a coupling rated for the operating temperature range of the application.
  7. Poor Maintenance: Neglecting regular maintenance can lead to undetected wear, damage, or contamination, which may ultimately result in failure. Implement a proactive maintenance schedule and inspect the coupling regularly.
  8. Foreign Object Debris (FOD): Foreign particles or debris caught between the coupling components can lead to uneven loads and wear. Keep the coupling and its surroundings clean to avoid FOD-related issues.
  9. Improper Installation: Incorrectly installing the coupling, such as using incorrect fasteners or not following the manufacturer’s guidelines, can compromise its performance and durability. Always refer to the installation instructions and seek professional help if needed.
  10. Environmental Factors: Consider the specific environmental conditions of the application, such as humidity, chemicals, or abrasive substances, and select a coupling that can withstand these conditions.

By understanding and addressing these potential causes of failure, users can ensure the longevity and reliable performance of clamp couplings in their mechanical systems.

clamp coupling

Can Clamp Couplings Accommodate Different Shaft Sizes and Materials?

Yes, clamp couplings are designed to accommodate different shaft sizes and materials, making them versatile for various mechanical applications. The flexibility in shaft size compatibility is one of the key advantages of using clamp couplings.

Clamp couplings typically come in a range of sizes, allowing them to fit various shaft diameters. The clamp design allows for easy adjustment and tightening around the shaft, creating a secure connection. This adjustability makes clamp couplings suitable for connecting shafts of different sizes without the need for precise machining or customizations.

Moreover, clamp couplings can handle different materials used for shafts, including steel, stainless steel, aluminum, and even non-metallic materials like plastics. As long as the shaft material is strong enough to handle the intended torque and load requirements, a clamp coupling can effectively connect the shafts.

When selecting a clamp coupling, it is essential to consider the specific application requirements, including torque, speed, misalignment, and environmental conditions. Properly matching the coupling size and material to the shafts’ specifications ensures a reliable and efficient connection, reducing the risk of premature wear or failure.

China Standard Concrete Pump Spare Parts 5China Standard Concrete Pump Spare Parts 5
editor by CX 2023-11-21

China manufacturer DN50-DN300 Cast Iron Pipe Coupling and Clamps for BS En 877 Drainage Sytsem

Product Description

DN50-DN300 cast iron pipe coupling and clamps for BS EN 877 drainage sytsem 

1. our products are made strictly according to EN877 standard.
2. size range from DN50 to DN300, with 3m/pc.
3. painting: inside epoxy paint in color yellow with thickness above 120 micron, outside paint in color red with thickness above 60 micron. If you have special requirement, please contact with us, as we could also make the painting according to your requirement.
4. length/pc: 3m
5. delivery time: 7-15 days, depend on your quantity.
6. application: used for waste water/rain water/ventilation.
7. advantage: avoid pollution, noise resistant.
8. payment term: T/T, L/C, or D/P.
9. production capacity: 2000tons/ month
10. we could do the third party inspection at famous organizations such as SGS, BV, etc.
11. by now we have shipped our cast iron pipes to many countries such as Germany,Italy,UK,Hongkong,Russia,Turkey,Sweden,Norway,Singapore,the Middle East,etc.

 

DN External diameter DE(mm) Wall thickness(mm) Unit weight Length
Nominal value Tolerance Nominal value Minimum value kg/pc (mm)
40 48 +2
-1
3.0 2.5 12.70 3000+/-20
50 58 3.5 3.0 13.00
70 78 3.5 3.0 17.70
75/80 83 3.5 3.0 18.90
100 110 3.5 3.0 25.20
125 135 +2
-2
4.0 3.5 35.40
150 160 4.0 3.5 42.20
200 210 +2.5
-2.5
5.0 4.0 69.30
250 274 5.5 4.5 99.80
300 326 6.0 5.0 129.70

If any inquiry , Please feel free  to contact with me 

 

clamp coupling

Are There Any Safety Considerations When Using Clamp Couplings in Specific Applications?

While clamp couplings are generally considered safe and reliable, there are specific safety considerations to keep in mind when using them in various applications:

  1. Proper Installation: Ensuring the clamp coupling is installed correctly is crucial for its safe operation. Follow the manufacturer’s guidelines and torque specifications during installation to prevent coupling failure.
  2. Maintenance: Regular maintenance is essential to identify wear, corrosion, or damage that could compromise the coupling’s integrity. Replace worn or damaged parts promptly to prevent unexpected failures.
  3. Temperature and Environment: Consider the operating temperature and environmental conditions of the application. In high-temperature or corrosive environments, choose materials like stainless steel that can withstand such conditions without compromising safety.
  4. Alignment: Misalignment between shafts can lead to premature wear and coupling failure. Ensure the shafts are properly aligned to prevent excessive stress on the coupling.
  5. Overloading: Avoid exceeding the torque and speed limits specified by the manufacturer. Overloading the coupling can lead to premature failure and safety hazards.
  6. Dynamic Balancing: In rotating machinery, ensure that components are dynamically balanced to reduce vibrations that could affect the coupling’s performance and cause fatigue failure.
  7. Periodic Inspection: Regularly inspect the clamp coupling and surrounding components for signs of wear, fatigue, or damage. Address any issues promptly to prevent unexpected failures.
  8. Application-Specific Considerations: Consider the specific requirements of the application. For example, in food processing, choose couplings that meet hygienic standards, while in explosive environments, consider couplings with anti-spark features.
  9. Training and Awareness: Ensure that personnel working with clamp couplings are adequately trained and aware of safety guidelines to handle the equipment properly.

By adhering to these safety considerations and taking appropriate precautions, clamp couplings can be used safely and effectively in various applications, contributing to the reliability and efficiency of mechanical systems.

clamp coupling

Clamp Couplings and Damping Vibrations/Noise

Yes, clamp couplings can help dampen vibrations and reduce noise in mechanical systems to some extent. While not specifically designed as vibration isolators, clamp couplings can mitigate vibrations and noise due to their unique design and material properties.

The design of clamp couplings involves a split hub with screws that securely fasten around the shafts. This design offers several benefits:

  1. Damping Effect: The material of the coupling can absorb and dampen some of the vibrations generated by rotating equipment. Elastomeric elements or flexible materials used in some clamp couplings can help attenuate vibrations.
  2. Reduction of Resonance: Vibrations in rotating machinery can sometimes lead to resonance, causing excessive oscillations. Clamp couplings can help break the resonance cycle and prevent amplification of vibrations.
  3. Torsional Compliance: Some clamp couplings exhibit a degree of torsional compliance, which means they can tolerate small angular misalignments and dampen torsional vibrations.
  4. Transmissible Torque Variation: In some cases, clamp couplings can absorb torque spikes or variations, reducing the impact of sudden changes in load.

While clamp couplings can provide some level of vibration and noise reduction, their primary function is to transmit torque and accommodate misalignment between shafts. For more demanding vibration isolation or noise reduction applications, specialized components such as flexible couplings with damping features or dedicated vibration isolation mounts may be more suitable.

It is essential to consider the specific requirements of the mechanical system and consult with experts to determine the most appropriate coupling or isolator for achieving the desired level of vibration and noise reduction.

clamp coupling

Different Types of Clamp Couplings

Clamp couplings come in various designs to accommodate different shaft sizes, torque levels, and application requirements. Some common types of clamp couplings available in the market include:

  1. Two-Piece Clamp Couplings: This type of coupling consists of two separate hubs that are connected by a clamp. The clamp is tightened to secure the two hubs onto the shafts, creating a rigid connection. Two-piece clamp couplings are easy to install and suitable for applications with moderate torque and misalignment.
  2. One-Piece Clamp Couplings: As the name suggests, one-piece clamp couplings have a single-piece construction, which simplifies the installation process. They provide a compact and lightweight solution for low to medium torque applications.
  3. Double-Walled Clamp Couplings: These couplings have a unique double-walled design, providing better torque transmission capabilities and torsional rigidity. They are ideal for applications with high torque and precise positioning requirements.
  4. Set Screw Clamp Couplings: Set screw clamp couplings use set screws to secure the coupling onto the shaft. While they are simple and cost-effective, they may not handle high torque and misalignment as effectively as other types.
  5. Wedge Clamp Couplings: Wedge clamp couplings use a wedge-shaped collar to create a tight grip on the shaft. They offer excellent torque transmission and axial holding power, making them suitable for heavy-duty applications.
  6. Keyless Clamp Couplings: Keyless clamp couplings eliminate the need for keyways and key connection. Instead, they use compression to secure the coupling to the shaft, providing high torque capacity and easy installation.
  7. Hydraulic Clamp Couplings: Hydraulic clamp couplings use hydraulic pressure to tighten the clamp, ensuring uniform pressure distribution and secure shaft connections. They are commonly used in high-power and critical applications.
  8. Clamp Couplings with Tapered Bushings: These couplings feature tapered bushings that provide a tight fit on the shaft and enhance torque transmission capabilities. They are suitable for heavy-duty applications and high misalignment conditions.

The selection of the appropriate clamp coupling depends on the specific requirements of the mechanical system, such as torque levels, shaft sizes, misalignment allowances, and operating conditions. Consulting with coupling manufacturers or engineering experts can help in choosing the right type of clamp coupling for a particular application.

China manufacturer DN50-DN300 Cast Iron Pipe Coupling and Clamps for BS En 877 Drainage Sytsem  China manufacturer DN50-DN300 Cast Iron Pipe Coupling and Clamps for BS En 877 Drainage Sytsem
editor by CX 2023-11-16

China supplier Concrete Pump Pipe Clamp Snap Coupling Concrete Pump Parts Pipe DN50 Quick Putzmeister Pipe Clamp

Product Description

ZheJiang CHINAMFG Precision Casting and Forging Inc. was established in 2003, covering an area of 40,000 square meter , with 300 employees. In 2571, the company passed the quality management system certification of GB/T 19001-2016 and ISO 9001:2015, and has a number of invention patents.It is a national high-tech enterprise.
       Our main products are bucket teeth,side teeth,bucket adapter for excavator and loader; Forged pipe coupling for concrete pump ; Drop forged chain for scraper conveyor, etc. Other casting and forging parts canalsobecustomized accordingto customer drawings. The main materials are alloy steel, high manganese steel, gray iron, ductile iron, etc.
      Our company can produce casting range in 0.1kg-2tons, forging range in 0.1kg-100kgs, casting and forging annual capacity of 10,000tons. From productdesign, mold development to heattreatment, machining and spraying, we provide the whole processof internal manufacturing to better control the cost and quality.
      ZheJiang Plus Import and Export Trading Co., Ltd. was established in 2571, is Wanxin’s subsidiary, mainly responsible for marketing and export.

Q1.Are you a manufacturer or a trading company?
we are totally manufacturer of machinery parts.

 

Q2.Can i get samples for checking the quality?
we can provide free samples,but you need to pay the freight.

 

Q3.What’s your MOQ?
For normal prodcuts,we don’t have MOQ.
For customerized products,we will tell you MOQ based on your drawing.

 

Q4.What’s your delivery time?
it’s about 7-45 days based on your quantity.

 

Q5.What’s your payment terms?
Amount<5000USD,T/T 100% in advance;
Amount≥5000USD,T/T 30% as deposit,balance before delivery. 

 

clamp coupling

Can Clamp Couplings Be Used in High-Temperature or Corrosive Environments?

Yes, clamp couplings are designed to be versatile and can be used in a wide range of environments, including high-temperature and corrosive conditions. However, their suitability depends on the specific material and coating used in the construction of the coupling.

In high-temperature environments, clamp couplings made from materials such as stainless steel or high-temperature alloys are commonly used. These materials have excellent heat resistance and can withstand elevated temperatures without losing their structural integrity. It is essential to choose a clamp coupling with a temperature rating that exceeds the operating temperature of the application to ensure safe and reliable performance.

In corrosive environments where exposure to chemicals, moisture, or other corrosive substances is a concern, selecting a corrosion-resistant material is critical. Stainless steel clamp couplings, particularly those made from 316-grade stainless steel, are widely used in such conditions due to their superior corrosion resistance. For more aggressive corrosive environments, special coatings or surface treatments can be applied to further enhance the coupling’s resistance to corrosion.

It is essential to consider the specific requirements of the application when selecting a clamp coupling for use in high-temperature or corrosive environments. Factors such as temperature, humidity, exposure to chemicals, and the presence of abrasive substances should be taken into account. Consulting with coupling manufacturers or industry experts can help in choosing the most suitable clamp coupling for the intended application.

clamp coupling

Impact of Clamp Coupling Design on Performance in Heavy-Duty Applications

The design of a clamp coupling plays a crucial role in determining its performance, especially in heavy-duty applications. Here are some key design factors and their impact:

  • Material Selection: The choice of material affects the strength, durability, and resistance to wear and corrosion. In heavy-duty applications, steel clamp couplings are often preferred due to their high tensile strength and ability to withstand heavy loads and torque.
  • Torsional Rigidity: Heavy-duty applications often involve transmitting high levels of torque. A clamp coupling with higher torsional rigidity will maintain the connection between shafts more effectively, minimizing backlash and ensuring accurate power transmission.
  • Hub Design: The hub of the clamp coupling should have a robust and precise design to provide a secure grip on the shafts. In heavy-duty applications, keyless and multiple screw designs are commonly used to distribute clamping forces evenly and prevent slippage.
  • Number of Screws: The number of screws used to secure the clamp coupling to the shafts can impact its holding power. More screws distributed around the circumference can provide better balance and prevent distortion under heavy loads.
  • Clamping Force: The clamping force applied by the coupling affects the torque transmission capabilities. In heavy-duty applications, it is crucial to ensure that the clamping force is sufficient to prevent slippage between the coupling and the shafts.
  • Surface Treatment: The surface of the clamp coupling can be treated to enhance its resistance to corrosion, wear, and fatigue. Surface treatments like coating or plating can significantly improve the coupling’s performance and longevity in challenging environments.
  • Alignment: Proper alignment during installation is vital to prevent premature wear and excessive stress on the coupling. In heavy-duty applications, precision alignment using alignment tools or laser systems is recommended to maintain optimal performance and prevent premature failure.

Conclusion: In heavy-duty applications, selecting a clamp coupling with the right material, torsional rigidity, hub design, number of screws, and clamping force is critical to ensuring reliable and efficient power transmission. Proper installation, regular maintenance, and adherence to manufacturer’s guidelines will further enhance the performance and longevity of the clamp coupling in heavy-duty applications.

clamp coupling

Advantages of Using a Clamp Coupling

A clamp coupling offers several advantages compared to other types of couplings, making it a popular choice in various mechanical systems:

  • Easy Installation: Clamp couplings are simple to install and require minimal tools and expertise. The design allows for quick assembly and disassembly, making maintenance and shaft replacement convenient.
  • Cost-Effective: With a straightforward design and fewer components, clamp couplings are cost-effective to manufacture and purchase.
  • High Torque Transmission: Clamp couplings can handle high torque loads, making them suitable for heavy-duty applications in industries like manufacturing, mining, and construction.
  • Zero Backlash: The clamping mechanism ensures a tight fit between the shafts and the hubs, resulting in zero backlash. This feature is vital for applications that require accurate and precise motion transfer.
  • Flexibility: Clamp couplings can accommodate different shaft sizes and materials, providing flexibility in system design and shaft compatibility.
  • Compact Design: The compact and lightweight design of clamp couplings makes them ideal for applications with space constraints.
  • No Lubrication Needed: Unlike some other couplings, clamp couplings do not require lubrication, reducing maintenance requirements and eliminating the risk of leakage or contamination in certain environments.
  • High Misalignment Tolerance: Clamp couplings can handle moderate levels of angular, parallel, and axial misalignment, ensuring reliable operation even when shafts are not perfectly aligned.
  • Reduced Downtime: The ease of installation and maintenance of clamp couplings contributes to reduced downtime during equipment repairs or replacements.

Due to these advantages, clamp couplings are widely used in various industries and mechanical setups for their simplicity, reliability, and cost-effectiveness in transmitting torque and rotational motion between shafts.

China supplier Concrete Pump Pipe Clamp Snap Coupling Concrete Pump Parts Pipe DN50 Quick Putzmeister Pipe Clamp  China supplier Concrete Pump Pipe Clamp Snap Coupling Concrete Pump Parts Pipe DN50 Quick Putzmeister Pipe Clamp
editor by CX 2023-11-16

China Professional Cast Iron Universal Dual Saddle Clamp Pipe Coupling

Product Description

Cast iron emergency  pipe leak repair clamp

Two-Piece Type Ductile Iron Repair Clamp, split sleeves

1. Product descriptin

  •    Pipe repair clamp for the quick,safe and permanent repair i the drinking water sector.
  •    Two-piece design,preferabley made from ductile cast iro.
  • Suitable for steel and cast iron pipe
  •  Nominal sizes: DN40,DN50,DN80,DN1
     
     
    Workshop:
    No.15, Xihu (West Lake) Dis.chuang S &T park, Jiansheng South Street, Chemical district HangZhou, ZheJiang province, China
     
     

    clamp coupling

    What are the Torque and Speed Limits of Clamp Couplings in Various Applications?

    The torque and speed limits of clamp couplings vary depending on their design, material, and application. Generally, clamp couplings are suitable for a wide range of torque and speed requirements in various mechanical systems. Here are some considerations:

    Torque Limits:

    Clamp couplings can handle a broad range of torque values, making them suitable for low, medium, and high torque applications. The torque capacity is influenced by factors such as the material and size of the coupling, as well as the clamping force applied to the shaft.

    It is crucial to select a clamp coupling that can handle the maximum torque generated in the system during operation. Oversizing the coupling ensures it can safely transmit the required torque without reaching its limits, reducing the risk of premature failure.

    Speed Limits:

    Similar to torque limits, the speed limits of clamp couplings are influenced by their design and material. In high-speed applications, factors like centrifugal forces and resonance become significant considerations.

    Clamp couplings made from high-strength materials like stainless steel or alloy steel can handle higher speeds with minimal risk of deformation or failure. Additionally, precision machining and balancing of the coupling help reduce vibration and maintain stability at elevated speeds.

    Application-Specific Considerations:

    When using clamp couplings in specific applications, factors like shock loads, reversing loads, and misalignment should be accounted for. These dynamic forces can impact the overall performance and durability of the coupling.

    It is essential to consult the manufacturer’s specifications and guidelines for torque and speed ratings. Additionally, engineering calculations and simulations can help determine the most suitable clamp coupling for a particular application.

    Professional Advice:

    If you are unsure about the torque and speed limits of clamp couplings for your specific application, it is advisable to seek professional advice from coupling manufacturers or engineering experts. They can provide valuable insights and recommend the most appropriate coupling for your requirements, ensuring reliable and efficient power transmission in your mechanical system.

    clamp coupling

    Comparison of Clamp Couplings with Jaw Couplings and Bellows Couplings

    Clamp couplings, jaw couplings, and bellows couplings are all common types of couplings used in mechanical power transmission. Each type has its unique design and features, making them suitable for different applications. Here’s a comparison of these couplings:

    1. Design:

    Clamp Couplings: Clamp couplings consist of a split hub with screws that tighten around the shafts, providing a secure and balanced connection.

    Jaw Couplings: Jaw couplings have two hubs with curved jaws that interlock to transmit torque. They can accommodate a certain degree of misalignment.

    Bellows Couplings: Bellows couplings use a thin-walled metallic bellows to transmit torque while compensating for misalignment. They are typically more flexible than clamp couplings and jaw couplings.

    1. Misalignment:

    Clamp Couplings: Clamp couplings can handle a small amount of angular misalignment but are better suited for applications with precise alignment.

    Jaw Couplings: Jaw couplings can accommodate angular and axial misalignment but have limitations on radial misalignment.

    Bellows Couplings: Bellows couplings can handle higher levels of misalignment, including angular, radial, and axial misalignment.

    1. Vibration Damping:

    Clamp Couplings: Some clamp couplings can provide a degree of vibration damping due to their material properties, but they are not specifically designed for this purpose.

    Jaw Couplings: Jaw couplings have some vibration absorption capabilities due to the flexibility of the elastomeric spider element.

    Bellows Couplings: Bellows couplings are known for their excellent vibration damping characteristics, making them suitable for applications where vibration isolation is critical.

    1. Backlash:

    Clamp Couplings: Clamp couplings typically have minimal backlash, providing precise torque transmission.

    Jaw Couplings: Jaw couplings have a small amount of backlash due to the clearance between the jaws and the spider element.

    Bellows Couplings: Bellows couplings have negligible backlash, making them suitable for applications requiring high precision.

    1. Temperature and Environment:

    Clamp Couplings: Clamp couplings are generally suitable for a wide range of temperatures and environments, depending on the material used.

    Jaw Couplings: Jaw couplings are versatile and can operate in various conditions, but their elastomeric elements may have temperature limitations.

    Bellows Couplings: Bellows couplings can withstand high temperatures and are often used in demanding environments.

    1. Cost:

    Clamp Couplings: Clamp couplings are often more cost-effective compared to jaw couplings and bellows couplings.

    Jaw Couplings: Jaw couplings are generally affordable and offer a good balance between cost and performance.

    Bellows Couplings: Bellows couplings are more expensive than clamp couplings and jaw couplings due to their precision and high-performance characteristics.

    When selecting a coupling, it is essential to consider the specific requirements of the application, including torque, misalignment, precision, and environmental factors. Consulting with coupling manufacturers or engineers can help in choosing the most suitable coupling for a particular mechanical system.

    clamp coupling

    Advantages of Using a Clamp Coupling

    A clamp coupling offers several advantages compared to other types of couplings, making it a popular choice in various mechanical systems:

    • Easy Installation: Clamp couplings are simple to install and require minimal tools and expertise. The design allows for quick assembly and disassembly, making maintenance and shaft replacement convenient.
    • Cost-Effective: With a straightforward design and fewer components, clamp couplings are cost-effective to manufacture and purchase.
    • High Torque Transmission: Clamp couplings can handle high torque loads, making them suitable for heavy-duty applications in industries like manufacturing, mining, and construction.
    • Zero Backlash: The clamping mechanism ensures a tight fit between the shafts and the hubs, resulting in zero backlash. This feature is vital for applications that require accurate and precise motion transfer.
    • Flexibility: Clamp couplings can accommodate different shaft sizes and materials, providing flexibility in system design and shaft compatibility.
    • Compact Design: The compact and lightweight design of clamp couplings makes them ideal for applications with space constraints.
    • No Lubrication Needed: Unlike some other couplings, clamp couplings do not require lubrication, reducing maintenance requirements and eliminating the risk of leakage or contamination in certain environments.
    • High Misalignment Tolerance: Clamp couplings can handle moderate levels of angular, parallel, and axial misalignment, ensuring reliable operation even when shafts are not perfectly aligned.
    • Reduced Downtime: The ease of installation and maintenance of clamp couplings contributes to reduced downtime during equipment repairs or replacements.

    Due to these advantages, clamp couplings are widely used in various industries and mechanical setups for their simplicity, reliability, and cost-effectiveness in transmitting torque and rotational motion between shafts.

    China Professional Cast Iron Universal Dual Saddle Clamp Pipe Coupling  China Professional Cast Iron Universal Dual Saddle Clamp Pipe Coupling
    editor by CX 2023-10-23